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Abstract

Research into challenges of machine learning models typically considers the se-
curity domain and the privacy domain separately. It is thus unclear whether the
defenses in one domain will have any unexpected impact on the other domain. In
this paper, we combine two domains together by investigating the interplay between
membership inference and robustness against adversarial examples in machine
learning. By performing membership inference attacks against both robust models
and natural (undefended) models, we find that the adversarial defense methods,
although increase the model robustness against adversarial examples, also make
the model more vulnerable to membership inference attacks, indicating a potential
conflict between privacy and robustness in machine learning.

1 Introduction

The security and privacy vulnerabilities of machine learning models have come to a forefront in
recent years, together with the arms race between attacks and defenses [3, 7, 13]. From the security
perspective, the adversary aims to induce misclassifications to the target model with either test-time
evasion attacks (also known as adversarial examples) [1, 17, 6] or training-time poisoning attacks
[2, 9]. From the privacy perspective, the adversary aims to infer private information about target
model’s training data [14, 4] or the target model itself [18, 19]. The research community has proposed
defenses to resolve both security issues [11, 16] and privacy issues [12, 8]. However, these defense
approaches typically focus solely on either the security domain or the privacy domain, and it is unclear
whether defense methods in one domain will have any unexpected impact on the other domain.

In this paper, we take a step towards enhancing our understanding of machine learning models
when both the security and privacy domains are combined. In particular, we investigate the inter-
play between privacy and adversarial robustness in machine learning by measuring the success of
membership inference attacks on defense methods that mitigate the threat of adversarial examples.

Membership inference attacks determine whether a data point is from the target model’s training set
or not [14, 22]. Adversarial defense methods enhance model robustness against adversarial examples
by ensuring that model predictions remain unchanged for a small area around each input [11, 20, 24].
However, this objective is optimized on training set, increasing each training point’s influence on the
model. This makes the robust model more susceptible to membership inference attacks.

We perform membership inference attacks against robust models trained with one of state-of-the-art
adversarial defenses: adversarial training proposed by Madry et al. [11]. Our experiment results show
that the robust models indeed leak more membership information, compared to natural models. We
can further enhance membership inference attacks by exploiting the structural properties of robust
models on adversarially perturbed data. We refer interested readers to the full version of this paper
[15] for membership inference results with other adversarial defense methods.

∗The full version of this paper [15] is accepted by ACM CCS 2019.
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2 Background

2.1 Adversarial examples and defenses

For a classification task with the training set Dtrain over pairs of inputs x and labels y, the natural
training algorithm learns a model Fθ by minimizing the prediction loss ` over all training examples

min
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

`(Fθ(x), y), (1)

where | · | measures the size of a dataset.

However, machine learning models can be easily fooled by adversary examples [1, 17, 6], which
induce model misclassifications via the addition of imperceptible perturbations to benign inputs

argmax
i

Fθ(x̃)i 6= y, such that x̃ ∈ Bε(x), (2)

where Bε(x) denotes the set of points around x within the perturbation budget of ε. The solution to
Equation (2) is called an “untargeted adversarial example” as the adversarial goal is to achieve any
misclassification. In comparison, a “targeted adversarial example” ensures that the model prediction
is a specified incorrect label y′, which is not equal to y.

argmax
i

Fθ(x̃)i = y′, such that x̃ ∈ Bε(x). (3)

To provide robustness against adversarial examples, a robust training algorithm is adopted to train the
model by taking the adversarial attack into consideration [11, 20, 24]

min
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

α · `(Fθ(x), y) + (1− α) · max
x̃∈Bε(x)

`(Fθ(x̃), y). (4)

However, it is usually hard to find the exact solution to the inner maximization problem. Therefore,
the adversarial defense methods propose different ways to approximate the robust loss. In particular,
Madry et al. [11] propose one of the most effective defense methods by training purely on adversarial
examples (α = 0) generated from a multi-step projected gradient descent (PGD) method

x̃t+1 = ΠBε(x)[x̃
t + η · sign(∇x̃t`(Fθ(x̃

t), y) )], (5)

where η is the step size,∇ denotes the gradient computation, and ΠBε(x) means the projection onto
the perturbation constraint.

2.2 Membership inference

Shokri et al. [14] design a membership inference attack method based on training an inference
model to distinguish between predictions on training set members versus non-members. To train
the inference model, they introduce the shadow training technique: (1) the adversary first trains
multiple “shadow models” which simulate the behavior of the target model, (2) based on the shadow
models’ outputs on their own training and test examples, the adversary obtains a labeled (member
vs non-member) dataset, and (3) finally trains the inference model as a neural network to perform
membership inference attack against the target model.

A simpler inference model, such as a linear classifier, can also distinguish significantly vulnerable
members from non-members. Yeom et al. [22] suggest comparing the prediction confidence value
of a target example with a threshold. Large confidence indicates membership. Their results show
that such a simple confidence-thresholding method is reasonably effective and achieves membership
inference accuracy close to that of a complex neural network classifier learned from shadow training.

3 Membership Inference Attacks against Robust Models

3.1 Membership inference performance

For a machine learning model F (we skip its parameters θ for simplicity) robustly trained with the
perturbation constraint Bε, the membership inference attacks aim to determine whether a given input
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(x, y) is in its training set Dtrain or not. We use the inference accuracy to evaluate the success of
membership inference attacks, and sample an input (x, y) from either training set Dtrain or test set
Dtest with an equal 50% probability. Thus a random guessing strategy will lead to a 50% inference
accuracy. We denote the inference strategy as I(F,Bε, (x, y)), which codes members as 1, and
non-members as 0. The membership inference accuracy can be expressed as

Ainf (F,Bε, I) =

∑
(x,y)∈Dtrain

I(F,Bε, (x, y))

2 · |Dtrain|
+

∑
(x,y)∈Dtest

1− I(F,Bε, (x, y))

2 · |Dtest|
. (6)

3.2 Exploiting the model’s predictions on benign examples

We adopt the confidence-thresholding method [22] due to its simplicity and effectiveness:

IB(F,Bε, (x, y)) = 1{F (x)y ≥ τB}, (7)

where 1{·} is the indicator function, an input (x, y) is inferred as member if its prediction confidence
F (x)y is larger than (or equal to) a preset threshold τB. In this paper, we evaluate the worst case
inference risks by choosing τB to achieve the highest inference accuracy (Equation (6)). In practice,
an adversary can learn the threshold via the shadow training technique [14].

3.3 Exploiting the model’s predictions on adversarial examples

We further leverage the structural properties of robust models to enhance membership inference
attacks. Specifically, we use the PGD attack method (Equation (5)) to generate an untargeted
adversarial example xadv under Bε, and use a threshold on the model’s prediction confidence on xadv

IA(F,Bε, (x, y)) = 1{F (xadv)y ≥ τA}. (8)

Similarly, we choose the preset threshold τA to achieve the highest inference accuracy.

3.3.1 Targeted adversarial examples

We extend the attack to exploiting targeted adversarial examples. Targeted adversarial examples
contain information about distance of the benign input to each label’s decision boundary, and are
expected to leak more membership information. We adapt the PGD attack to generate targeted
adversarial examples by iteratively minizing the targeted prediction loss.

x̃t+1 = ΠBε(x)[x̃
t − η · sign(∇x̃t`(Fθ(x̃

t), y′) )]. (9)

The confidence-thresholding inference strategy does not apply here because there exist k− 1 targeted
adversarial examples for each input. Instead, following Shokri et al. [14], we train neural network
models for membership inferences. For each class label, we first choose a fraction of training and
test points and generate corresponding targeted adversarial examples. Next, we compute model
predictions on the targeted adversarial examples, and use them to train the membership inference
classifier. Finally, we perform inference attacks using the remaining training and test points.

4 Experiment Results

We follow the method of Madry et al. [11] to train robust classifiers with l∞ perturbation constraints
(Bε(x) = {x′ | ‖x′ − x‖∞ ≤ ε}) on Yale Face dataset [5, 10], Fashion-MNIST dataset [21], and
CIFAR10 dataset. Details about experiment setup can be found in the full version of this paper [15].

We present the membership inference results in Table 1 and visualize the divergence between the loss
distribution over members and non-members on robust and natural CIFAR10 classifiers in Figure 1.
We can see that compared to natural models, robust models are more vulnerable to membership
inference attacks with much higher inference accuracy. We also notice that compared with benign
inputs, leveraging (untargeted) adversarial examples increases the inference accuracy.

We use the robust CIFAR10 classifier [11] as an example to show the gain of using targeted adversarial
examples for membership inferences. For each class label, we learn a dedicated inference model (a
3-layer MLP) with predictions of targeted adversarial examples generated from 500 training points
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(a) Robust CIFAR10 classifier from Madry et al. [11],
with 99% train accuracy and 87% test accuracy.

(b) Natural CIFAR10 classifier, with 100% train ac-
curacy and 95% test accuracy.

Figure 1: Histogram of models’ loss values of training data (members) and test data (non-members).

Table 1: Membership inference attacks against natural and robust models [11].
Target Models Accuracy Performance Membership Inference

dataset model training
ε

train test adv-train adv-test inference inference
architecture method accuracy accuracy accuracy accuracy accuracy (IB) accuracy (IA)

Yale Face 10-layer natural N.A. 100% 98.25% 4.53% 2.92% 55.85% 54.27%CNN

Yale Face 10-layer robust [11] 8/255 99.89% 96.69% 99.00% 77.63% 61.69% 68.83%CNN

Fashion 8-layer natural N.A. 100% 92.18% 4.35% 4.14% 57.12% 50.95%MNIST CNN
Fashion 8-layer robust [11] 0.1 99.93% 90.88% 96.91% 68.06% 58.32% 64.49%MNIST CNN

CIFAR10 Wide natural N.A. 100% 95.01% 0% 0% 57.43% 50.86%ResNet [23]

CIFAR10 wide robust [11] 8/255 99.99% 87.25% 96.08% 46.61% 74.89% 75.67%ResNet [23]

and 500 test points, then test the inference model on remaining training and test points. We call this
method “model (targeted)”. Similarly, we obtain inference models with the same architecture by
using either untargeted adversarial examples’ predictions or benign examples’ predictions.We call
these methods “model (untargeted)” and “model (benign)”. Finally, we adapt IB and IA to be class
dependent by choosing the threshold according to confidence values from 500 training points and
500 test points. we call the adapted methods “confidence (benign)” and “confidence (untargeted)”.

We present the membership inference results with different approaches in Table 2. We can see
that targeted adversarial example based inference strategy “model (targeted)” always has the
highest inference accuracy.

Table 2: Membership inference attacks against robust CIFAR10 classifier [11].
inference class 0 class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9method

confidence 70.88% 63.57% 80.16% 90.43% 82.30% 81.34% 75.34% 69.54% 69.16% 68.13%(benign)

model 71.49% 64.42% 76.74% 90.49% 82.17% 79.84% 70.92% 67.61% 69.57% 66.34%(benign)

confidence 72.21% 67.52% 79.71% 87.64% 81.83% 81.57% 77.66% 72.92% 74.36% 71.86%(untargeted)

model 72.70% 67.69% 80.16% 87.83% 81.57% 81.34% 76.97% 72.82% 74.40% 72.06%(untargeted)

model 74.42% 68.88% 83.58% 90.57% 84.47% 83.02% 79.94% 72.98% 75.33% 73.32%(targeted)

5 Conclusion

In this paper, we investigate the membership inference privacy risk of defense approaches that mitigate
the threat of adversarial examples. Our results indicate a potential conflict between privacy and
adversarial robustness, and highlight the importance of thinking about security and privacy together.
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