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Abstract
In this paper, we study the problem of estimating smooth Generalized Linear
Models (GLM) in the Non-interactive Local Differential Privacy (NLDP) model.
Different from its classical setting, our model allows the server to process some
additional public but unlabeled data. By using Stein’s lemma and its variants,
we first show that there is an (ε, δ)-NLDP algorithm for GLM (under some mild
assumptions), if each data record is i.i.d sampled from some sub-Gaussian distri-
bution with bounded `1-norm. Then with high probability, the sample complexity
of public and private data, for the algorithm to achieve an α estimation error (in
`∞-norm), is O(p2α−2) and O(p2α−2ε−2) respectively if α is not too small (i.e.,
α ≥ Ω( 1√

p )), where p is the dimensionality of the data. This is a significant
improvement over the previously known quasi-polynomial (in α) or exponential
(in p) complexity of GLM with no public data. We demonstrate the effectiveness
of our algorithms through experiments on both synthetic and real world datasets.

1 Introduction
Generalized Linear Model (GLM) is one of the most fundamental models in statistics and machine
learning. It generalizes ordinary linear regression by allowing the linear model to be related to
the response variable via a link function and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value. GLM was introduced as a way of unifying
various statistical models, including linear, logistic and Poisson regressions.

GLM: Let y ∈ [0, 1] be the response variable that belongs to an exponential family with natural
parameter η. That is, its probability density function could be written as p(y|η) = exp(ηy −
Φ(η))h(y), where Φ is the cumulative generating function. Given observations y1, · · · , yn such that
yi ∼ p(yi|ηi) for η = (η1, · · · , ηn), the maximum likelihood estimator (MLE) can be written as
p(y1, y2, · · · |η) = exp(

∑n
i=1 yiηi − Φ(ηi))Π

n
i=1h(yi). In GLM, we assume that η is modeled by

linear relations, i.e., ηi = 〈xi, w∗〉 for some w∗ ∈ Rp and feature vector xi. Thus, maximizing
MLE is equivalent to minimizing 1

n

∑n
i=1[Φ(〈xi, w〉)− yi〈xi, w〉]. The goal is to find w∗, which is

equivalent to minimizing its population version

w∗ = arg min
w∈Rp

E(x,y)[Φ(〈x,w〉)− y〈x,w〉]. (1)

One often encountered challenge for using GLM in real world applications is how to handle sensitive
data, such as those in social science and medical research. As a commonly-accepted approach for
preserving privacy, Differential Privacy (DP) [9] provides provable protection against identification
and is resilient to arbitrary auxiliary information that might be available to attackers.

As a popular way of achieving DP, Local Differential Privacy (LDP) has received considerable
attentions in recent years and been adopted in industry [7, 11, 20]. In LDP, each individual manages
her proper data and discloses them to a server through some DP mechanisms. The server collects the
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(now private) data of each individual and combines them into a resulting data analysis. Information
exchange between the server and each individual could be either only once or multiple times.
Correspondingly, protocols for LDP are called non-interactive LDP (NLDP) or interactive LDP. Due
to its ease of implementation (e.g. no need to deal with the network latency), NLDP is often preferred
in practice.

While there are many results on GLM in the DP and interactive LDP models [5, 1, 13, 14], GLM
in NLDP is still not well understood due to the limitation of the model. [18, 23, 26] and [24]
comprehensively studied this problem. However, all of the results are on the negative side. More
specifically, they showed that to achieve an error of α, the sample complexity needs to be quasi-
polynomial in α [24, 26] or even exponential in the dimensionality p [18, 23] (see Related Work
section for more details). Due to these negative results, there is no study on the practical performance
on these algorithms.

On the other hand, instead of the classical DP model or its relaxations, some recent work focus
on a relaxed model of DP where the server has additional public but unlabeled data, such as [?
12, 16, 17, 2]. Specifically, they show that with the power of these public unlabeled data, the sample
complexity could be further improved [2] under the assumption that these public data has the same
marginal distribution as the private ones. And it has better practical performance than the classical
DP model on some tasks, such as the Empirical Risk Minimization [12, 16]. However, all of above
work focus on the central DP model, thus there is no existing work study the NLDP model with
public unlabeled data.

Thus, a natural question is: For the problem of estimating GLM in the NLDP model, can we
further reduce the sample complexity if the curator has additional public but unlabeled data?
Moreover, is there any efficient and effective algorithm on the problem?

In this paper, we provide a partial answer to the above two questions by studying the NLDP model
where the curator (server) is allowed to access some additional public but unlabeled data. Our
contributions can be summarized as follows:

1. We first show that when the feature vector x of GLM is sub-Gaussian with bounded `1-norm,
there is an (ε, δ)-NLDP algorithm for GLM (under some mild assumptions) whose sample
complexity for achieving an error of α (in `∞-norm) is O(p2ε−2α−2) and O(p2α−2) (with
other terms omitted) for private and public data respectively, if α is not too small (i.e.,
α ≥ Ω( 1√

p )). We note that this is the first result that achieves a fully polynomial sample
complexity for a general class of loss functions in the NLDP model with public unlabeled
data.

2. Then we provide an experimental study of our algorithm on both synthetic and real world
datasets. The experimental results suggest that our methods are efficient and effective,
which is consistent with our theoretical analysis. To our best knowledge, these are the first
effective algorithms in the NLDP model with public unlabeled data for GLM problem.

2 Non-interactive LDP Model with Public Unlabeled Data

Local Differential Privacy (LDP): In LDP, we have data universe X and Y , n players with each
holding a private data record (x, y) ∈ X × Y sampled from some distribution P , where x ∈ Rp is
the feature vector and y ∈ R is the label or response, and a server that is in charge of coordinating the
protocol. An LDP protocol proceeds in T rounds. In each round, the server sends a message, which
is often called a query, to a subset of the players, requesting them to run a particular algorithm. Based
on the query, each player i in the subset selects an algorithm Qi, runs it on her own data, and sends
the output back to the server.

Definition 1. [15] An algorithm Q is ε-locally differentially private (LDP) if for all pairs x, x′ ∈ D,
and for all events E in the output space of Q, we have Pr[Q(x) ∈ E] ≤ eεPr[Q(x′) ∈ E]. A
multi-player protocol is ε-LDP if for all possible inputs and runs of the protocol, the transcript of
player i’s interaction with the server is ε-LDP. If T = 1, we say that the protocol is ε non-interactive
LDP (NLDP).

Our Model: Different from the above classical NLDP model where only one private dataset
{(xi, yi)}ni=1 exists, the NLDP model in our setting allows the server to have an additional public
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but unlabeled dataset D′ = {xj}n+m
j=n+1 ⊂ Xm, where each xj is sampled from Px, which is the

marginal distribution of P (i.e., they have the same distribution as {xi}ni=1).

3 Privately Learning Generalized Linear Models
In this section, we study GLM in our model and privately estimate w∗ in (1) by using both the
private data {(xi, yi)}ni=1 and the public unlabeled data {xj}n+m

j=n+1. Our goal is to achieve a fully
polynomial sample complexity for n and m, i.e., n,m = Poly(p, 1

ε ,
1
α , log 1

δ ), such that there is an
(ε, δ)-NLDP algorithm with estimation error less than α (with high probability). Before presenting
our ideas, we first consider the following lemma for x ∼ N (0,Σ), which is from Stein’s lemma [4].

Algorithm 1 Non-interactive LDP for smooth GLM with public data
Input: Private data {(xi, yi)}ni=1 ⊂ (Rp×{0, 1})n, where ‖xi‖1 ≤ r and |yi| ≤ 1, public unlabeled
data {xj}n+m

j=n+1, loss function Φ : R 7→ R, privacy parameters ε, δ, and initial value c ∈ R.
1: for Each user i ∈ [n] do
2: Release x̂ixTi = xix

T
i + E1,i, where E1,i ∈ Rp×p is a symmetric matrix and each entry of

the upper triangle matrix is sampled from N (0,
32r4 log 2.5

δ

ε2 ).

3: Release x̂iyi = xiyi + E2,i, where E2,i ∈ Rp is sampled from N (0,
32r2 log 2.5

δ

ε2 Ip).
4: end for
5: for The server do
6: Let X̂TX =

∑n
i=1 x̂ix

T
i and X̂T y =

∑n
i=1 x̂iyi. Calculate ŵols = (X̂TX)−1X̂T y.

7: Calculate ỹj = xTj ŵ
ols for each j = n + 1, · · · , n + m. Find the root ĉΦ such that

1 = ĉΦ
m

∑n+m
j=n+1 Φ(2)(ĉΦỹj) using Newton’s root-finding method:

8: for t = 1, 2, · · · until convergence do

9: c = c− c 1
m

∑n+m+1
j=n+1 Φ(2)(cỹj)−1

1
m

∑n+m+1
j=n+1 {Φ(2)(cỹj)+cỹjΦ(3)(cỹj)}

.

10: end for
11: end for
12: return ŵglm = ĉΦ · ŵols.

Lemma 1 ([4]). If x ∼ N (0,Σ), then w∗ in (1) can be written as w∗ = cΦ × wols, where
cΦ is the fixed point of z 7→ (E[Φ(2)(〈x,wols〉z)])−1 (assuming E[Φ(2)(〈x,wols〉z)] 6= 0) and
wols = Σ−1E[xy] is the Ordinary Least Squares (OLS) vector.

From Lemma 1, we can see that to obtain w∗, it is sufficient to estimate wols and the underlying
constant cΦ. Specifically, to estimate wols in a non-interactive local differentially private way, a
direct way is to let each player perturb her sufficient statistics, i.e., xixTi and yixi. After receiving
the private OLS estimator ŵols, the server can then estimate the constant cΦ by using the public
unlabeled data and ŵols. From the definition, it is easy to see that cΦ is independent of the label
y. Thus, cΦ can be estimated by using the empirical version of E[Φ(2)(〈x,wols〉z)]. That is, find
the root of the function 1− c

m

∑n+m
j=n+1 Φ(2)(c〈xj , ŵols〉). Several methods are available for finding

roots, such as the Newton’s method which has a quadratic convergence rate.

One problem with the above approach is that Lemma 1 needs x to be Gaussian, which implies that
the sensitivity of the term xix

T
i could be unbounded. We also note that Lemma 1 is only for Gaussian

distribution. The following lemma extends Lemma 1 to bounded sub-Gaussian with an additional
additive error of O(

‖w∗‖2∞√
p ).

Lemma 2 ([10]). Let x1, · · · , xn ∈ Rp be i.i.d realizations of a random vector x that is sub-
Gaussian with zero mean, whose covariance matrix Σ has its corresponding Σ

1
2 being diagonally

dominant 2, and whose distribution is supported on a `2-norm ball of radius r. Let v = Σ−
1
2x be

the whitened random vector of x with sub-Gaussian norm ‖v‖ψ2
= κx. If each vi has constant

2A square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the
diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries
in that row.
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first and second conditional moments (i.e., ∀j ∈ [p] and w̃ = Σ
1
2w∗, E[vij |

∑
k 6=j w̃vik] and

E[v2
ij |
∑
k 6=j w̃vik] are deterministic) and the function Φ(2) is Lipschitz continuous with constant G,

then for cΦ = 1
E[Φ(2)(〈xi,w∗〉)]

(assuming E[Φ(2)(〈xi, w∗〉)] 6= 0), the following holds for GLM in (1)

‖ 1

cΦ
· w∗ − wols‖∞ ≤ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

, (2)

where ρq for q = {2,∞} is the conditional number of Σ in `q norm and wols = (E[xxT ])−1E[xy] is
the OLS vector.

Lemma 2 indicates that we can use the same idea as above to estimate w∗. Note that the forms of
cΦ in Lemmas 1 and 2 are different. However, due to the closeness of w∗ and wols in (2), we can
still use 1

E[Φ(2)(〈xi,wols〉c̄Φ])
to approximate cΦ, where c̄Φ is the root of cE[Φ(2)(〈xi, wols〉c)− 1 (see

Appendix for the details of the proof). Combining these ideas, we have Algorithm 1.

Theorem 1. For any 0 < ε, δ < 1, Algorithm 1 is (ε, δ) non-interactive LDP.

The following theorem shows the sample complexity of the bounded sub-Gaussian case.

Theorem 2. Under the assumptions of Lemma 2, if further assume that the distribution of x is
supported on the `1-norm ball with radius r, |Φ(2)(·)| ≤ L, and for some constant c̄ and τ > 0, the
function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the condition of f(c̄) ≥ 1 + τ , and the derivative of f
in the interval [0,max{c̄, cΦ}] does not change the sign (i.e., its absolute value is lower bounded by
some constant M > 0), then for sufficiently large m,n such that

m ≥ Ω
(
‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}ρ2ρ

2
∞p

2 max{1, 1

cΦ
}2
)

(3)

n ≥ Ω
(ρ2ρ

2
∞‖Σ‖22p2‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p
ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
, (4)

with probability at least 1− exp(−Ω(p))− ξ, the output ŵglm in Algorithm 1 satisfies

‖ŵglm − w∗‖∞ ≤ O
(ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
×max{ 1

cΦ
, 1}2

+
ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2

min(Σ) min{λ
1
2

min(Σ), 1}
√
n

max{ 1

cΦ
, 1}2

+ ρ2ρ
2
∞‖Σ

1
2 ‖∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
, (5)

where G,L, τ,M, c̄, r, κx are assumed to be O(1) and thus omitted in the Big-O notations (see
Appendix for the explicit form of m and n).

Theorem 2 suggests that if we omit all the other terms and assume that ‖w∗‖∞ = O(1), then for
any given error α ≥ Ω( 1√

p ), there is an (ε, δ)-LDP algorithm whose sample complexities of both
private (n) and public unlabeled (m) data, to achieve an estimation error of α (in `∞-norm), are
Õ(p2ε−2α−2).

Note that there are some previous work on LDP linear regression. [18] proposed an algorithm with a
sample complexity of Õ(pα−2ε−2) and [26] achieved a sample complexity of O(log pα−4ε−2). It
seems that our sample complexity for the more general GLM is worse than theirs. However, these
results are not really comparable due to their different settings. Firstly, [18, 26] considered the
optimization error and [25] measured the `2-norm statistical error, while we estimate the `∞-norm
statistical error. Secondly, w∗ is assumed to be bounded in `2-norm in [18], `1-norm in [26], and
`∞-norm in ours. There is also a result on NLDP linear regression [25]. It relies on assumptions that
‖x‖2 = O(

√
p) and w∗ is 1-sparse, which are not needed in ours.

In the Appendix section, we provide the proof and experimental study of our algorithm.
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A Experiments

A.1 Evaluation on synthetic data

Experimental Setting For GLM we consider the problem of binary logistic loss i.e., Φ(〈x,w〉) =

ln (1 + exp (〈x,w〉)) in (1). For the problem we first compare the squared relative error ‖ŵ−w
∗‖2∞

‖w∗‖2∞
with respect to different privacy parameters ε ∈ {10, 5, 3, 2}. In these experiments, we estimate
the squared relative error with the fixed dimensionality p = 10 and the population parameter
w∗ = (1, 1, ..., 1)/

√
p. The sample size n is chosen from the set 104 ·{1, 3, 5, ..., 29}. We assume that

the same amount of public unlabeled data are available. The features are generated independently from
a Bernoulli distribution Pr

(
xi,j = ± 1

p

)
= 0.5 and the label is generated according to the logistic

model. The results are shown in Figure 1a. We then evaluate the impact of the dimensionality. In these
experiments, we fix the privacy parameters 3 ε = 10 and tune the dimensionality p ∈ {5, 10, 12, 15}.
w∗s are the same as above. The sample size takes values from n ∈ 104 · {10, 12, 14, ..., 48} and the
same amount of public unlabeled data are assumed. The labels are generated as the same as above.
Here we measure the performance directly by the relative error. For each experiments above, we run
1000 times and take the average of the errors. The results are shown in Figure 1b.

From Figure 1a, we can see that the square of relative error is inversely proportional to the number of
samples n. In other words, in order to achieve relative error α, we only need the number of private
samples n ∼ 1

α2 if we omit the dependency on the other parameters. Besides, we also observe that the
square of relative error is proportional to 1

ε2 , which matches our theoretical result. From Figure 1b,
we can see that the relative error increases as the dimensionality increases. It may seem a little weird
that it is not linear with the dimensionality. We note that as the dimensionality p changes, some other
parameters, for example, the l2 norm of the covariance matrix and w∗∞ also change, which bring
other effects to the relative error.

A.2 Evaluation on real data

We conduct experiment for GLM with logistic loss on the Covertype dataset [8]. Before running
our algorithm, we first normalize the data and remove some co-related features. After the pre-
processing, the dataset contains 581012 samples and 44 features. There are seven possible values for
the label. Since multinomial logistic regression can not be regarded as a Generalized Linear Model,

3Note that in the studies on LDP ERM, ε is always chosen as a large value such as [3].
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Figure 1: GLM with logistic loss under i.i.d Bernoulli design. The left plot shows the squared
relative error under different levels of privacy. The right one shows relative error under different
dimensionality.
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Figure 2: GLM with logistic loss on Covertype dataset

we consider a weaker test, which is to classify whether the label is Lodgepole Pine (type 2) or not.
The algorithm that we choose is still binary logistic regression. We divide the data into training
and testing, where ntraining = 406708 and ntesting = 174304 and randomly choose the sample size
n ∈ 104 · {1, 2, 3, ..., 39} from the training data and use exactly the same data as public. Regarding
the privacy parameter, we let ε take value from {20, 10, 5}. We measure the performance by the
prediction accuracy. For each combination of ε and n, the experiment is repeated 1000 times. We
observe that when ε takes a reasonable value, the performance is approaching to the non-private
case, provided that the size of private dataset is large enough. Thus, our algorithm is practical and is
comparable to the non-private one.

B Background and Auxiliary Lemmas

Notations For a positive semi-definite matrix M ∈ Rp×p, we define the M -norm for a vector w
as ‖w‖2M = wTMw. λmin(A) is the minimal singular value of the matrix A. For a semi positive
definite matrix M ∈ Rp×p, let its SVD composition be Σ = UTΣU , where Σ = diag(λ1, · · · , λp),
then M

1
2 is defined as M

1
2 = UTΣ

1
2U , where Σ

1
2 = diag(

√
λ1, · · · ,

√
λp).

Definition 2 (Sub-Gaussian). For a given constant κ, a random variable x ∈ R is said to be sub-
Gaussian if it satisfies supm≥1

1√
m
E[|x|m]

1
m ≤ κ. The smallest such κ is the sub-Gaussian norm

of x and it is denoted by ‖x‖ψ2
. A random vector x ∈ Rp is called a sub-Gaussian vector if there

exists a constant κ such that for any unit vector v, we have ‖〈x, v〉‖ψ2
≤ κ.

Lemma 3 (Weyl’s Inequality [19]). Let X,Y ∈ Rp×p be two symmetric matrices, and E = X − Y .
Then, for all i = 1, · · · , p, we have

|σi(X)− σi(Y )| ≤ ‖E‖2.
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Lemma 4. Let w ∈ Rp be a fixed vector and E be a symmetric Gaussian random matrix where the
upper triangle entries are i.i.d Gaussian distribution N (0, σ2). Then, with probability at least 1− ξ,
the following holds for a fixed positive semi-definite matrix M ∈ Rp×p

‖Ew‖2M ≤ σ2Tr(M)‖w‖2 log
2p2

ξ
.

Proof of Lemma 4. Let M = UTΣU denote the eigenvalue decomposition of M . Then, we have

‖Ew‖2M = wTETUTΣUEw =

p∑
i=1

σi

p∑
j=1

[UE]2ijw
2
i .

Note that [UE]i,j =
∑p
k=1 Ui,kEj,k where Ei,j is Gaussian. Since U is orthogonal, we know that

[UE]i,j ∼ N (0, σ2). Using the Gaussian tail bound for all i, j ∈ [d]2, we have

P( max
i,j∈[p]2

|[UE]i,j ≥

√
σ2 log

2p2

ξ
) ≤ ξ.

Lemma 5 (Theorem 4.7.1 in [22] ). Let x be a random vector in Rp that is sub-Gaussian with
covariance matrix Σ and ‖Σ− 1

2x‖ψ2
≤ κx. Then, with probability at least 1 − exp(−p), the

empirical covariance matrix 1
nX

TX = 1
n

∑n
i=1 xix

T
i satisfies

‖ 1

n
XTX − Σ‖2 ≤ Cκ2

x

√
p

n
‖Σ‖2.

Lemma 6 (Corollary 2.3.6 in [21]). Let M ∈ Rp×p be a symmetric matrix whose entries mij

are independent for j > i, have mean zero, and are uniformly bounded in magnitude by 1. Then,
there exists absolute constants C2, c1 > 0 such that with probability at least 1− exp(−C2c,1p), the
following inequality holds ‖M‖2 ≤ C

√
p.

Below we introduce some concentration lemmas given in [10].

Lemma 7. Let Bδ(w̃) denote the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w : ‖w−w̃‖2 ≤
δ}). For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d isotropic sub-Gaussian random vectors with ‖xi‖ψ2 ≤ kx,
and µ̃ = E[‖x‖2]√

p . For any given function g : R 7→ R that is Lipschitz continuous with G and satisfies
supw∈Bδ(w̃) ‖g(〈x,w〉)‖ψ2

≤ κg, with probability at least 1 − 2 exp(−p), the following holds for
np > 51 max{χ, χ2}

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ c(κg +
κx
ũ

)

√
p logm

m
,

where χ =
(κg+κx

µ̃ )2

cδ2G2µ̃2 . c is some absolute constant.

Lemma 8. Let Bδ(w̃) be the ball centered at w̃ and with radius δ (i.e., Bδ(w̃) = {w : ‖w−w̃‖2 ≤ δ}).
For i = 1, 2 · · · , n, let xi ∈ Rp be i.i.d sub-Gaussian random vectors with covariance matrix Σ. For
any given function g : R 7→ R that is uniformly bounded by L and Lipschitz continuous with G, the
following holds with probability at least 1− exp(−p)

sup
w∈Bδ(w̃)

| 1
m

m∑
i=1

g(〈xi, w〉)− E[g(〈x,w〉)]| ≤ 2{G(‖w̃‖2 + δ)‖Σ‖2 + L}
√

p

m
.

The following lemma shows that the private estimator ŵols is close to the unperturbed one.

Lemma 9. Let X = [xT1 ;xT2 ; · · · ;xTn ] ∈ Rn×d be a matrix such that XTX is invertible, and
x1, · · · , xn are realizations of a sub-Gaussian random variable x which satisfies the condition
of ‖Σ− 1

2x‖ψ2
≤ κx = O(1) and Σ = E[xxT ] is the the population covariance matrix. Let

8



w̃ols = (XTX)−1XT y denote the empirical linear regression estimator. Then, for sufficiently large

n ≥ Ω(
κ4
x‖Σ‖

2
2pr

4 log 1
δ

ε2λ2
min(Σ)

), the following holds with probability at least 1− exp(−Ω(p))− ξ,

‖ŵols − w̃ols‖22 = O
(pr2(1 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2nλ2
min(Σ)

)
, (6)

where r = r if xi is sampled from some bounded distribution.

Proof of Lemma 9. It is obvious that X̂TX = XTX+E1, whereE1 is a symmetric Gaussian matrix
with each entry sampled from N (0, σ2

1) and σ2
1 = O(

nr4 log 1
δ

ε2 ). X̂T y = XT y + E2, where E2 is a

Gaussian vector sampled from N (0, σ2
2Ip) and σ2

2 = O(
nr2 log 1

δ

ε2 ).

We first show that X̂TX is invertible with high probability under our assumption.

It is sufficient to show that XTX + E1 � XTX
2 , i.e., ‖E1‖2 ≤ λmin(XTX)

2 . By Lemma 6, we can
see that with probability 1− exp(−Ω(p)),

‖E1‖2 ≤ O(
r2
√
pn log 1

δ

ε
).

Also, by Lemma 5 and Lemma 3 we know that with probability at least 1− exp(−Ω(p)),
λmin(XTX) ≥ nλmin(Σ)−O(κ2

x‖Σ‖2
√
pn).

Thus, it is sufficient to show that nλmin(Σ) ≥ O(
κ2
x‖Σ‖2r

2
√
pn log 1

δ

ε ), which is true under the

assumption of n ≥ Ω(
κ4
x‖Σ‖

2
2pr

4 log 1
δ

ε2λ2
min(Σ)

). Thus, with probability at least 1 − exp(−Ω(p)), it is
invertible. In the following we will always assume that this event holds.

By direct calculation we have
‖ŵols − w̃ols‖2 = −(XTX + E1)−1E1w̃

ols + (XTX + E1)−1E2.

Thus, by Cauchy-Schwartz inequality we get
‖ŵols − w̃ols‖22 = O

(
‖E1w̃

ols‖2(XTX+E1)−2 + ‖E2‖2(XTX+E1)−2

)
.

Since we already assume that XTX +E1 � XTX
2 , by Lemma 4 we can obtain the following with

probability at least 1− ξ

‖E1w̃
ols‖2(XTX+E1)−2 ≤ O

(nr4 log 1
δ

ε2
‖w̃ols‖22Tr((XTX)−2) log

4p2

ξ

)
‖E2‖2(XTX+E1)−2 ≤ O

(nr2 log 1
δ

ε2
Tr((XTX)−2)

4p

ξ

)
.

Thus, we have

‖ŵols − w̃ols‖22 ≤ C1n ·
r2(1 + r2‖w̃ols‖22) log 1

δ log p2

ξ

ε2
Tr((XTX)−2).

For the term of Tr((XTX)−2), we get

Tr((XTX)−2) ≤ (Tr((XTX)−1))2 ≤ p‖(XTX)−2‖22 =
p

λ2
min(XTX)

≤ O(
p

n2λ2
min(Σ)

),

where the last inequality is due to the fact that λmin(XTX) ≥ nλmin(Σ) − O(κ2
x‖Σ‖2

√
pn) ≥

1
2nλmin(Σ) (by the assumption on n). This completes the proof.

Let wols = (E[xxT ])−1E[xy] denote the population linear regression estimator. The following
lemma bounds the estimation error between w̃ols and wols. The proof could be found in [10] or [6].
Lemma 10 (Prop. 7 in [10]). Assume that E[xi] = 0, E[xix

T
i ] = Σ, and Σ−

1
2xi and yi are

sub-Gaussian with norms κx and γ, respectively. If n ≥ Ω(κxγp), the following holds

‖w̃ols − wols‖2 ≤ O
(
γκx

√
p

nλmin(Σ)

)
,

with probability at least 1− 3 exp(−p).
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C Proofs

In order to show Theorem 2, we first show a theorem which is a generalization of theorem 2.

Theorem 3. Under the assumptions of Lemma 2, if further assume that the distribution of x is
supported on the `1-norm ball with radius r, sup

w:‖w−Σ
1
2wols‖2≤1

‖Φ(2)(〈x,w〉)‖ψ2
≤ κg, the

function f(c) = cE[Φ(2)(〈x,wols〉c)] satisfies the inequality of f(c̄) ≥ 1 + τ for some constant c̄
and τ > 0, and the derivative of f in the interval of [0,max{c̄, cΦ}] does not change the sign (i.e., its
absolute value is lower bounded by some constant M > 0), then for sufficiently large m,n such that

m ≥ Ω̃
( 1

µ̃2
ε2n
)
, (7)

n ≥ Ω
(
‖Σ‖22

p2ρ2ρ
2
∞‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
, (8)

the following holds with probability at least 1− exp(−Ω(p))− ξ,

‖ŵglm − w∗‖∞ ≤ O
(
ρ2ρ

2
∞‖Σ

1
2 ‖2 ×

p‖w∗‖∞max{1, ‖w∗‖3∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2

+ ρ2ρ
2
∞
‖w∗‖2∞max{1, ‖w∗‖2∞}√

p
max{1, 1

cΦ
}+

√
ρ2ρ∞‖w∗‖∞max{1, ‖w∗‖∞}

1

µ̃

√
p2 logm

m
max{1, 1

cΦ
}
)
, (9)

where µ̃ = E[‖x‖2]√
p , the terms of r, κx, κg, G,M, τ, c̄ are assumed to be constants, and thus omitted

in the Big-O notations (see Appendix for the explicit forms of m and n).

Since Theorem 3 is the most complicated one, we will first prove it and then Theorem 2.

C.1 Proof of Theorem 3

Since r = O(1) (by assumption), combining this with Lemmas 9 and 10, we have that with probability
at least 1− exp(−Ω(p))− ξ and under the assumption on n, there is a constant C3 > 0 such that

‖ŵols − wols‖2 ≤ C3

κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
. (10)

Lemma 11. Let Φ(2) be a function that is Lipschitz continuous with constantG, and f : R×Rp 7→ R
be another function such that f(c, w) = cE[Φ(2)(〈x,w〉c)] and its empirical one is

f̂(c, w) =
c

m

m∑
j=1

Φ(2)(〈x,w〉c).

Let Bδ(w̄ols) = {w : ‖w − w̄ols‖2 ≤ δ}, where w̄ols = Σ
1
2wols. Under the assumptions in Lemma

9 and Eq. (10), if further assume that ‖Σ− 1
2x‖ψ2

≤ κx, supw∈Bδ(w̄ols) ‖Φ(2)(〈x,w〉)‖ψ2
≤ κg,

and there exist c̄ > 0 and τ > 0 such that f(c̄, wols) ≥ 1 + τ , then there is c̄Φ ∈ (0, c̄) such that
1 = f(c̄Φ, w

ols). Also, for sufficiently large n and m such that

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖22 log 1
δ log p2

ξ ‖Σ‖2
}
)
, (11)

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
)
, (12)

10



with probability at least 1 − 2 exp(−p), there exists a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1.

Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in the absolute value (i.e., does
not change sign) by M > 0 in the interval c ∈ [0, c̄], then the following holds

|ĉΦ − c̄Φ| ≤ O
(
M−1c̄(κg +

κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

(13)

Proof of Lemma 11. We divide the proof into three parts.

Part 1: Existence of c̄Φ: From the definition, we know that f(0, wols) = 0 and f(c̄, wols) >
1. Since f is continuous, we known that there exists a constant c̄Φ ∈ (0, c̄) which satisfying
f(c̄Φ, w

ols) = 0.

Part 2: Existence of ĉΦ: For simplicity, we use the following notations.

δ = C3

κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nmin{λ1/2

min(Σ), 1}
, δ′ =

‖Σ‖
1
2
2 δ

λ
1
2

min(Σ)
, (14)

where C3 is the one in (10). Thus, ‖Σ 1
2 ŵols − Σ

1
2wols‖2 ≤ δ′.

Now consider the term of |f̂(c, ŵols)− f(c, ŵols)| for c ∈ [0, c̄]. We have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, ŵols)| ≤ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, w)− f(c, w)|, (15)

where Bδ′Σ (wols) = {w : ‖Σ 1
2w − Σ

1
2wols‖2 ≤ δ′}.

Note that for any x, we have 〈x,w〉 = 〈v,Σ 1
2w〉, where v = Σ−

1
2x follows an isotropic sub-Gaussian

distribution. Also, by definition we know that w ∈ Bδ′Σ (wols) is equivalent to Σ
1
2w ∈ Bδ′(w̄ols).

Thus, we have

sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

|f̂(c, ŵols)− f(c, ŵols)|

≤ c̄ sup
c∈[0,c̄]

sup
w∈Bδ′Σ (wols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ 1

2w〉c)|

= c̄ sup
c∈[0,c̄]

sup
Σ

1
2w∈Bδ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi,Σ
1
2w〉c)− EΦ(2)(〈v,Σ 1

2w〉c)|

= c̄ sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|. (16)

By Lemma 7, we know that when mp ≥ 51 max{χ, χ−1}, where

χ =
(κg + κx

µ̃ )2

cδ′2G2µ̃2
= Θ

( (κg + κx
µ̃ )2

G2µ̃2

ε2nλmin(Σ) min{λmin(Σ), 1}
pr4‖wols‖22 log 1

δ log p2

ξ ‖Σ‖2

)
,

the following holds with probability at least 1− 2 exp(−p)

sup
w′∈Bc̄δ(w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)| ≤ O((κg +
κx
µ̃

)

√
p logm

m
). (17)

By the Lipschitz property of Φ(2), we have that for any w1 and w2,

sup
c∈[0,c̄]

|f(c, w1)− f(c, w2)| ≤ Gc̄2E[〈v,Σ 1
2 (w1 − w2)〉]

≤ κxGc̄2‖Σ
1
2 (w1 − w2)‖2. (18)
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Taking w1 = ŵols and w2 = wols, we have

sup
c∈[0,c̄]

|f(c, ŵols)− f(c, wols)| ≤ O
(
κxGc̄

2‖Σ‖
1
2
2

δ

λ
1
2

min(Σ)

)
.

Combining this with (16), (17), (18), and taking δ as in (14), we get

sup
c∈[0,c̄]

|f̂(c, ŵols)−f(c, wols)| ≤ O
(
c̄(κg+

κx
µ̃

)

√
p logm

m
+Gc̄2‖Σ‖

1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min min{λ1/2

min(Σ), 1}

)
.

(19)
Let B denote the RHS of (19). If c = c̄, we have f̂(c, ŵols) ≥ 1 + τ − B. Thus, if B ≤ τ , there
must exist a ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ

ols) = 1.

To ensure that B ≤ τ holds, it is sufficient to have

O(c̄(κg +
κx
µ̃

)

√
p logm

m
) ≤ τ

2

and

O(Gc̄2‖Σ‖
1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2
.

This means that

m ≥ Ω
(
c̄2(κg +

κx
µ̃

)2p logmτ−2
)
,

n ≥ Ω(κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
)
,

which are assumed in the lemma.

Part 3: Estimation Error: So far, we know that f̂(ĉΦ, ŵ
ols) = f(c̄Φ, w

ols) = 1 with high
probability. By (15), (16) and (17), we have

|1− f(ĉΦ, ŵ
ols)| = |f̂(ĉΦ, ŵ

ols)− f(ĉΦ, ŵ
ols)| ≤ O(c̄(κg +

κx
µ̃

)

√
p logm

m
).

By the same argument for (19), we have

|f(ĉΦ, ŵ
ols)− f(ĉΦ, w

ols)| ≤ Gκxc̄2‖Σ‖
1
2
2

δ

λ
1
2

min(Σ)
.

Thus, using Taylor expansion on f(c, wols) around cΦ and by the assumption of the bounded
derivative of f , we have

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|
≤ |f(ĉΦ, w

ols)− f(ĉΦ, ŵ
ols)|+ |f(ĉΦ, ŵ

ols)− 1|

≤ O
(
c̄(κg +

κx
µ̃

)

√
p logm

m
+Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

)
.

Next, we prove our main theorem.

Proof of Theorem 3. By definition, we have

‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵols − c̄Φwols‖∞ + ‖c̄Φwols − w∗‖∞
≤ ‖ĉΦŵols − c̄Φwols‖∞ + ‖c̄Φwols − cΦwols‖∞ + ‖cΦwols − w∗‖∞. (20)
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We first bound the term of |c̄Φ−cΦ|. Since c̄ΦE[Φ(2)(〈x,wols〉c̄Φ)] = 1 and cΦE[Φ(2)(〈x,w∗〉)] = 1
(by definition), we get

|f(c̄Φ, w
ols)− f(cΦ, w

ols)| = |cΦE[Φ(2)(〈x,w∗〉)]− f(cΦ, w
ols)|

≤ cΦ|E[Φ(2)(〈x,w∗〉)− Φ(2)(〈x,wols〉cΦ)]

≤ cΦG|E[〈x, (w∗ − cΦwols)〉]
≤ cΦG‖(w∗ − cΦwols)‖∞E‖x‖1
≤ cΦGr‖cΦwols − w∗‖∞,

where the last inequality is due to the assumption that ‖x‖1 ≤ r.

Thus, by the assumption of the bounded deviation of f(c, wols) on [0,max{c̄, cΦ}], we have

M |c̄Φ − cΦ| ≤ |f(c̄Φ, w
ols)− f(cΦ, w

ols)| ≤ cΦGr‖cΦwols − w∗‖∞.

By Lemma 2 in the context, we have

|c̄Φ − cΦ| ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p

. (21)

Thus, the second term of (20) is bounded by

‖c̄Φwols − cΦwols‖∞ ≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖2∞√
p
‖wols‖∞

≤ 16M−1cΦG
2r2κ3

x

√
ρ2ρ∞

‖w∗‖3∞√
p

(
1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
M−1r3κ6

xG
3ρ2ρ

2
∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, cΦ}

)
, (22)

where the last inequality is due to Lemma 2 in the context.

By Lemma 2 in the context, the third term of (20) is bounded by 16cΦGrκ
3
x
√
ρ2ρ∞

‖w∗‖2∞√
p .

For the first term of (20), by (10) and Lemma 11 we have

‖ĉΦŵols − c̄Φwols‖∞ ≤ |ĉΦ| · ‖ŵols − wols‖∞ + |ĉΦ − c̄Φ| · ‖wols‖∞

≤ O
(
c̄
κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

+ ‖wols‖∞(M−1c̄(κg +
κx
µ̃

)

√
p logm

m
+M−1Gκ2

xc̄
2‖Σ‖

1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)
)
.

(23)

For the first term of (23), we have

c̄
κx
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
≤ c̄

κxpr
2‖wols‖∞

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}

≤ c̄
κxpr

2‖w∗‖∞
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

= O
(
c̄
pκ4

x
√
ρ2ρ∞Gr

3‖w∗‖∞max{1, ‖w∗‖∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}
)
. (24)
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For the second term of (23), we have

‖wols‖∞M−1c̄(κg +
κx
µ̃

)

√
p logm

m

≤ c̄‖w∗‖∞(κg +
κx
µ̃

)

√
p logm

m
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)

≤ O
(
Grκ3

x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}
)
. (25)

For the third term of (23), we have

‖wols‖∞M−1Gκ2
xc̄

2‖Σ‖
1
2
2

√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
)

≤M−1Gκ2
xc̄

2‖Σ‖
1
2
2

pr2‖w∗‖2∞
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
(

1

cΦ
+ 16Grκ3

x

√
ρ2ρ∞

‖w∗‖∞√
p

)2

≤ O
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2 ‖2

pr4‖w∗‖2∞max{1, ‖w∗‖2∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2
)
. (26)

Thus, the first term of (20) is bounded by (since m ≥ Ω(n))

‖ĉΦŵols − c̄Φwols‖∞ ≤ O
(
c̄
pκ4

x
√
ρ2ρ∞Gr

3‖w∗‖2∞max{1, ‖w∗‖∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}

+Grκ3
x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}+

M−1G3κ8
xc̄

2ρ2ρ
2
∞‖Σ

1
2 ‖2

pr4‖w∗‖2∞max{1, ‖w∗‖2∞}
√

log 1
δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2

= O
(
M−1(κg +

κx
µ̃

)G3κ8
xc̄

2ρ2ρ
2
∞‖Σ

1
2 ‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3∞}

√
logm log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2
)
.

Putting all the bounds together, we have

‖ŵglm − w∗‖∞ ≤ Õ
(
M−1G3κ8

xc̄
2ρ2ρ

2
∞‖Σ

1
2 ‖2

×
pr4‖w∗‖∞max{1, ‖w∗‖3∞}

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
max{1, 1

cΦ
}2

+M−1r3κ6
xcΦG

3ρ2ρ
2
∞
‖w∗‖2∞max{1, ‖w∗‖2∞}√

p
max{1, 1

cΦ
}+

Grκ3
x

√
ρ2ρ∞c̄‖w∗‖∞max{1, ‖w∗‖∞}(κg +

κx
µ̃

)

√
p logm

m
max{1, 1

cΦ
}
)
. (27)

Next, we bound the probability. We assume that Lemma 9, 10 and 11 hold with probability at least
1− exp(−Ω(p))− ρ. They hold when

m ≥ Ω
(
(κg +

κx
µ̃

)2 max{p logmτ−2,
1

G2µ̃2

ε2n

pr4‖wols‖22 log 1
δ log p2

ξ

}
)
, (28)

n ≥ Ω(max{κ4
xG

2c̄4‖Σ‖2
pr4‖wols‖22 log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
,
κ4
x‖Σ‖22pr4 log 1

δ

ε2λ2
min(Σ)

}
)
. (29)
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Since ‖wols‖2 ≤
√
p‖w∗‖∞( 1

cΦ
+ 16Grκ3

x
√
ρ2ρ∞

‖w∗‖∞√
p ), it suffices for n

n ≥ Ω
(
G4c̄4‖Σ‖22

p2r6κ10
x ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞} log 1

δ log p2

ξ

τ2ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
. (30)

C.2 Proof of Theorem 2

Lemma 12. Let c̄Φ, c̄, τ, f, f̂ be defined the same as in Lemma 11. If further assume that |Φ(2)(·)| ≤
L for some constant L > 0 and is Lipschitz continuous with constant G, then, under the assumptions
in Lemma 9 and (10), with probability at least 1− 4 exp(−p) there exists a constant ĉΦ ∈ [0, c̄] such
that f̂(ĉΦ, ŵ

ols) = 1. Furthermore, if the derivative of c 7→ f(c, wols) is bounded below in absolute
value (i.e., does not change the sign) by M > 0 in the interval c ∈ [0, c̄], then with probability at least
1− 4 exp(−p), the following holds

|ĉΦ − c̄Φ| ≤ O
(M−1GLc̄2κ2

xr
2‖Σ‖

1
2
2

√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2

min(Σ) min{λ
1
2

min(Σ), 1}
√
n

+M−1LG‖Σ‖
1
2
2 ‖wols‖2

√
p

m

)
(31)

for sufficiently large m,n such that

n ≥ Ω
(LG2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(32)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (33)

Proof of Lemma 12 . The main idea of this proof is almost the same as the one for Lemma 11. The
only difference is that instead of using Lemma 7 to get (17), we use here Lemma 8 to obtain the
following with probability at least 1− exp(−p)

sup
w′∈Bc̄δ′ (w̄ols)

| 1
m

m∑
j=1

Φ(2)(〈vi, w′〉)− EΦ(2)(〈v, w′〉)|

≤ O
(
(G(‖w̄ols‖2 + c̄δ′)‖I‖2 + L)

√
p

m

≤ O
(
(G‖Σ‖

1
2
2 (‖wols‖2 + c̄

δ

λ
1
2

min(Σ)
) + L)

√
p

m

)
. (34)

Thus, by (16), (18) and (34), we have

sup
c∈[0,c̄]

|f̂(c, ŵols)− f(c, wols)| ≤ O
(
G‖Σ‖

1
2
2 ‖wols‖2

√
p

m
+

Gκxc̄‖Σ‖
1
2
2 ‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ L

√
p

m

)
. (35)

Let D denote the RHS of (35), we have

f̂(c̄, ŵols) ≥ 1 + τ −D.
It is sufficient to show that τ > D, which holds when

O(Gc̄2‖Σ‖
1
2
2

κ2
x
√
pr2‖wols‖2

√
log 1

δ log p2

ξ

ε
√
nλ

1/2
min(Σ) min{λ1/2

min(Σ), 1}
) ≤ τ

2

and

O(
Gκxc̄‖Σ‖

1
2
2 L‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
) ≤ τ

2
.
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That is,

n ≥ Ω
(G2τ−2c̄4‖Σ‖2κ4

xpr
4‖wols‖22 log 1

δ log p2

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
)

(36)

m ≥ Ω
(
G2L2‖Σ‖2‖wols‖22pτ−2). (37)

Then, there exists ĉΦ ∈ [0, c̄] such that f̂(ĉΦ, ŵ
ols) = 1. We can easily get

M |ĉΦ − c̄Φ| ≤ |f(ĉΦ, w
ols)− f(c̄Φ, w

ols)|

≤ O
(Gc̄2κ2

xr
2‖Σ‖

1
2
2

√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2

min(Σ) min{λ
1
2

min(Σ), 1}
√
n

+
Gκxc̄‖Σ‖

1
2
2 ‖wols‖2

√
pr2
√

log 1
δ log p2

ξ

ελ
1/2
min(Σ) min{λ1/2

min(Σ), 1}

√
p

mn
+ LG‖Σ‖

1
2
2 ‖wols‖2

√
p

m

)
(38)

≤ O
(GLc̄2κ2

xr
2‖Σ‖

1
2
2

√
p‖wols‖2

√
log 1

δ log p
ξ2

ελ
1
2

min(Σ) min{λ
1
2

min(Σ), 1}
√
n

+ LG‖Σ‖
1
2
2 ‖wols‖2

√
p

m

)
. (39)

Proof of Theorem 2 . The proof is almost the same as the one for Theorem 3. By definition, we
have
‖ŵglm − w∗‖∞ ≤ ‖ĉΦŵols − c̄Φwols‖∞ + ‖c̄Φwols − w∗‖∞

≤ ‖ĉΦŵols − c̄Φwols‖∞ + ‖c̄Φwols − cΦwols‖∞ + ‖cΦwols − w∗‖∞. (40)
The second term of (40) is bounded by

‖c̄Φwols − cΦwols‖∞ ≤ O
(
M−1r2κ7

xcΦG
3ρ2ρ

2
∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
. (41)

By Lemma 2 in the context, the third term of (40) is bounded by 16cΦGrκ
3
x
√
ρ2ρ∞

‖w∗‖∞√
p . The first

term is bounded by

‖ĉΦŵols − c̄Φwols‖∞ ≤

O
(M−1G3Lc̄2κ8

xr
4ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2

min(Σ) min{λ
1
2

min(Σ), 1}
√
n

×max{ 1

cΦ
, 1}2

+
M−1G3Lc̄2κ6

xr
2ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
×max{ 1

cΦ
, 1}2

)
. (42)

Thus, in total we have

‖ŵglm − w∗‖∞ ≤ O
(M−1G3Lc̄2κ6

xr
2ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p√

m
×max{ 1

cΦ
, 1}2

+
G3Lc̄2κ6

xr
4ρ2ρ

2
∞‖w∗‖2∞max{1, ‖w∗‖2∞}‖Σ‖

1
2
2 p
√

log 1
δ log p

ξ2

ελ
1
2

min(Σ) min{λ
1
2

min(Σ), 1}
√
n

max{ 1

cΦ
, 1}2

+M−1r2κ7
xcΦG

3ρ2ρ
2
∞‖Σ

1
2 ‖∞
‖w∗‖3∞max{1, ‖w∗‖∞}√

p
max{1, 1

cΦ
}
)
. (43)

The probability of success is at least 1− exp(−Ω(p))− ξ. The sample complexity should satisfy

m ≥ Ω
(
G2L2‖Σ‖2‖w∗‖2∞max{1, ‖w∗‖2∞}G2r2κ6

xρ2ρ
2
∞p

2τ−2 max{1, 1

cΦ
}2
)

(44)

n ≥ Ω
(ρ2ρ

2
∞G

4τ−2c̄4‖Σ‖22κ10
x p

2‖w∗‖2∞r6 max{1, ‖w∗‖2∞} log 1
δ log p3

ξ

ε2λmin(Σ) min{λmin(Σ), 1}
max{1, 1

cΦ
}2
)
. (45)
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