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Abstract

Machine learning models are commonly trained on sensitive and personal data
such as pictures, medical records, financial records, etc. A serious breach of the
privacy of this training set occurs when an adversary is able to decide whether or
not a specific data point in her possession was used to train a model.
We protect the model by adding noise to the gradients and as an alternative method,
add noise only to the logits to protect the output of the model and evaluate the
effect of these two differentially-private techniques against membership inference
attacks on 5 diverse datasets. While all previous membership inference attacks rely
on access to the posterior probabilities, we present the first attack which only relies
on the predicted class label - yet shows high success rate.

1 Introduction

Studies inferring presence of certain individuals from summary statistics of a population dates
back to [6]. More recently, Shokri et al. [10] demonstrated membership inference can be similarly
performed on black-box machine learning (ML) models. Such attacks are especially severe given the
proliferation of ML models (e.g., cloud service APIs, medical diagnosis) and the privacy sensitivity
of the training data used to train these models.

There are serious risks associated with membership inference attacks and it is important to protect the
learning models and the individuals whose data was used to train these models against the membership
inference adversary. A general framework that is commonly used for privacy is differential privacy [4,
2, 3] (DP), which offers rigorous mathematical guarantees of the privacy of the individuals whose
data is contained in a database. Differential privacy relies on methodical perturbation of the algorithm
that is applied on a database such that the presence or the absence of an individual’s data in that
database is not observable by any adversary. This perturbation is usually done via adding noise and
the privacy budget or spending, ε, is inversely proportional to the amount of noise. However, there
seems to be no systematic study on the success of defending membership inference attacks with DP.
Previous studies connecting these two [8, 7] rely only on the gradient perturbation and are mainly
focused on the relationship between the privacy budget and the degraded utility of the model, rather
than the performance of the attacker.

Contributions. In this paper, we try to have a deeper, more comprehensive look at the membership
inference attacks and DP methods to defend against these attacks. Our main contributions are:

a. We study the effect of applying DP-SGD [1] to our models on the membership inference attacks
and unlike the original attack algorithms in [9], we do not restrain ourselves by choosing thresholds
to measure the success rate of the adversary and instead report the AUC values. We carry out our
experiments using MNIST, FashionMNIST, CIFAR10, CIFAR100 and Purchase100 datasets.
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b. As an alternative to DP-SGD, we propose a faster method which protects the output of the
black-box models. We achieve this by adding noise to the logits only at the querying time of a
trained model and study the performance of the membership inference attacker.

c. All the membership inference attacks that we are aware of use the posterior information from
the victim model. We suggest a novel attack model which can work only with the argmax of the
posterior vector from the model. In this method, the attacker depends on generating multiple
noisy samples from each data point. We refer to this as sampling attack.

d. We mitigate the success of the sampling attack with a randomized response algorithm [12, 5] that
flips the returned class labels.

2 Method and Experiments

2.1 Attack Technique

Central to performing the membership inference attack of Shokri et al. [10] is training multiple shadow
models (which mimics the black-box behaviour of the victim ML model) and attack models (binary
membership classifiers). Consequently, the approach depends heavily on an attacker with access to
the same training data distribution as that of the victim model. To circumvent the attacker’s access to
training data and additionally operating under weaker assumptions, Salem et al. [9] demonstrated that
effective membership inference are possible. We choose the most versatile adversarial model of [9]
to inspect membership inference attacks on our dataset:

LRN-Free Adversary. This adversarial model requires no shadow model or access to data from the
same distribution as the training set of the victim model. At attack time, the adversary queries the
victim model by the data point under attack and directly inspects the posterior vector. If the maximum
value of the posterior vector is above a certain threshold, it is hypothesized that the point belonged to
the training set of the model therefore the model is more confident about it and thus that data point is
classified as in (member of training set), otherwise as out. However, different from the original paper,
we refrain from choosing thresholds. Instead we calculate the Area Under the ROC Curve (AUC) for
all the possible thresholds. Since, as opposed to other adversarial techniques, this procedure requires
no training of any shadow or attack model, we refer to this method as learning-free adversary.

2.2 Defenses

DP-SGD. The first defense mechanism that we study is DP-SGD [1], which adds noise to the
l2-clipped gradients during the Stochastic Gradient Descent (SGD) step of training. The task
of calculating the accumulated privacy budget over the course of training is done by moments
accountant [1].

DP-Logits. A drawback of the DP-SGD method is that due to adding noise at each epoch of training,
the accumulated value of ε grows to very large numbers. It also slows down the process of training.
Combined with the fact that we assume the adversary would not have access to the internal parameters
of the network, we decided to use a method that protects only the output. For this, we train the models
with no DP method but use the Gaussian Mechanism to add noise to l2 normalized logits when the
network is queried:

l(xi)← l(xi)/max(1,
‖l(xi)‖
S

), for clipping norm S

where l(xi) indicates the vector of logits for the input xi. We call this method DP-Logits for short.
The privacy budget for this method and for the (ε, δ) differentially-private Gaussian Mechanism with

the noise scale σ and l2 sensitivity S can be calculated as: σ ≥ S
ε

√
2 ln( 1.25δ ) for δ ∝ 1

|d| where |d|
is the size of the training dataset.

2.3 Sampling Attack

In general, all the membership inference adversarial techniques depend on the information obtained
from the posterior vectors of the victim model. This tempts us to suggest that by avoiding to return
the posterior vector, and just reporting the most confident ‘argmax’ label k = argmaxk P (y = k|xi)
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of it, we can defeat the adversary, completely. This is in fact true for all the previously-suggested
membership inference attack methods, however, we propose a new technique which can help the
adversary reconstruct the posterior vector. In this method, the adversary generates n noisy samples
from each data point and formulates the posterior vector as

p̂(y = k|xi) =
1

n

nk∑
i=1

1, for n noisy samples generated from xi

where nk is the number of samples that are returned with label k. She can then use the maximum
value of this reconstructed posterior, p̂, and utilize LRN-Free adversary to attack. For this method,
choosing the best noise level is crucial for the success of the attacker. The attacker with access to data
from the same distribution as the training set of the victim model can query a trained shadow model
with noisy samples for different values of noise and choose the optimal noise level corresponding
to the most successful attack. This means that for this attack method an access to the dataset and a
shadow model is required, however, no attack model is necessary.

2.4 Defense Against the Sampling Attack

As a defense against the sampling attack, we propose using the randomized response [12, 5] mech-
anism with a fair coin. Since we have more than 2 classes, we flip the coin twice and with a total
probability of 0.75% keep the returned label otherwise uniformly at random choose among the other
labels. This means that the privacy budget is

1

n
ε = ln(

Pr[returned label = k|true label = k]

Pr[returned label = k|true label = k′]
) = ln(

0.75

0.25/(Nc − 1)
) = ln 3(Nc − 1)

where Nc indicates the total number of classes in the dataset and the factor 1
n is the graceful

deterioration of privacy due to querying the same point n times.

3 Experimental Setup

Since our focus is on Machine Learning as a Service (MLaaS), whenever the adversary requires a
shadow model, such as in the sampling attack technique, we assume that she has access to the same
model as the victim. Thus the structure of the neural network and the defense mechanisms applied
to the network (e.g. DP-SGD) are similar between the victim model and the shadow model. We
used a densely-connected network with 3 hidden layers for Purchase100 and a VGG [11]-inspired
convolutional neural network for other datasets.

MNIST 98
FashionMNIST 88
CIFAR10 69
CIFAR100 35
Purchase100 80

Table 1: Accuracies
of undefended vic-
tim models.

For each dataset, we combine the training and the test sets and divide this
collection into 4 equal parts. One part is used to train the shadow model (in),
one part as the test set (out) of the shadow model, and the other two parts are
used in the same way for the victim model.

Sampling attack. For the sampling attack, for image datasets we calibrate
the values in each channel to be in range [0, 1.0]. Then we add noise from a
Gaussian distribution with ρ = {i × 0.05|0 ≤ i < 20, i ∈ N} to each pixel
of the data in each channel, independently.

For Purchase100 which consists of binary features, we randomly flip the value of each feature from 0
to 1 or vice versa, with an increasing probability of flipping ρ = {i× 0.05|0 ≤ i < 20, i ∈ N}.

We generate n = 100 samples from each data point.

4 Results

DP-SGD and DP-Logits. To demonstrate the effect of applying DP on membership inference
attacks, we choose to plot AUC values versus accuracy of the model for different levels of noise
multiplier, m, which is defined as m = σ/S, where σ is the standard deviation of the Gaussian
distribution that the noise (for the DP mechanisms) is drawn from and S is the l2 norm clipping
threshold. Note that AUC = 0.5 means the attack is at chance level and completely unsuccessful and
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Figure 1: Performance of the attacker versus the accuracy for
DP-SGD and DP-Logits. Different noise multiplier levels of DP
algorithms are connected with the line in an increasing order.
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Figure 2: Sampling attack
vs. Randomized Response and
DPSGD

AUC = 1.0 indicates that the attacker is 100% successful in the membership inference attack. Fig. 1
shows the effect of applying DP-SGD and DP-Logits on the performance of the attacker for different
noise levels. Here we choose to include two datasets that contrast the most in the accuracy of the
model with no DP method applied (as stated in Table. 1). We find:

(i) Models that generalize better and have higher accuracy, e.g. MNIST and FashionMNIST, are
less prone to the membership inference attacks.

(ii) Compared to DP-SGD, the performance of the attacker drops faster at lower noise levels for
the DP-Logits method.

Method CIFAR10 CIFAR100 Purchase100

m∗
DPSGD 0.001 0.005 0.01

εDPSGD ∼ 109 ∼ 5× 107 ∼ 107

m∗
DP-Logits 0.01 0.001 0.001

εDP-Logits ∼ 500 ∼ 5000 ∼ 5000

Table 2: Optimal values of noise multipliers and
corresponding privacy budget, for both methods.

Note that the privacy budget has inverse rela-
tionship to the noise level. So from a DP point
of view, we are searching for a point with the
highest noise level that still has a good utility
compared to the base classifier. The optimal
values of the noise multiplier for the 3 most in-
teresting datasets, where the attacker is initially
successful, are listed in Table. 2. The corre-
sponding ε values for these optimal noise levels
are also listed in the same table. (See Appendix for a more comprehensive overview of the results on
each dataset)

Sampling attack vs randomized response and DP-SGD. In Fig. 2 we demonstrate the results for
sampling attack on two datasets which are most prone to membership inference attacks and show
how the randomized response or DPSGD-trained models can mitigate the risks of sampling attack
used as a membership inference technique. We observe that with sampling attack, the adversary is
able to retain almost half of her performance at the optimal input perturbation level (ρ) compared to
when the full posteriors are accessible. We also observe that DP-SGD trained models work better
against the sampling attack compared to when randomized response mechanism is used as a defense.

5 Conclusion

The lack of a systematic study on the effect of DP for defending against membership inference
attacks motivated us for this paper. We observed that, aside from DP-SGD that perturbs and protects
the whole model, we can use an output perturbation mechanism such as Gaussian Mechanism to
achieve satisfying results against the membership inference attackers with lower privacy spending
and faster implementation and computation. Our novel sampling attack method, does not depend on
the posterior vectors and the attacker can gain a significant portion of her initial performance just
by knowing the class label of the data points. These results might improve further if we generate
n > 100 noisy samples. The DP-SGD as well as the randomized response mechanism can protect
the model against the sampling attack. In this work, we only study the effect of using a fair coin
with a total probability of 75% to return the true answer (after being flipped twice). We expect that
by using an unfair coin and reducing the probability of returning the true answer, the attacker’s
performance would drop even further. Nevertheless, models that have been trained with DP-SGD
also offer acceptable protection against sampling attacks.
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method optimizer learning rate batch size
DP-SGD AdamOptimizer 0.001 128

DP-Logits AdamOptimizer 0.001 128
Table 3: The parameters used for DP-SGD and DP-Logits methods.

FashionMNIST MNIST CIFAR10 CIFAR100 Purchase100
22 20 14 63 478

Table 4: The l2 norm values at which the logits were clipped

A Randomized Response

For the randomized response mechanism we can calculate the expected accuracy (utility) of the model
as follows

accuracy =
nT

nT + nF

→ E[accuracyDP ] =
0.75 ∗ nT
nT + nF

+
0.25/(Nc − 1) ∗ nF

nT + nF

where nT and nF indicate the number of points which correctly match the ground truth labels and
the number of points which deviate from the ground truth labels, respectively.

B Parameters

All our experiments were implemented in Tensorflow. The parameters used for each DP method is
listed in Table. 3. The most important parameters for both DP-SGD and DP-Logits methods are the
l2 clipping threshold, S, which bounds the sensitivity of the function and the standard deviation of
the Gaussian noise, σ. The effect of these two parameters is intertwined and larger values of noise are
needed for larger clipping thresholds. In general, the clipping threshold should be set to a percentile
of the parameter that we want to clip.

For DPSGD, we set S = 3 for CIFAR10 and CIFAR100 and S = 1 for the rest of data sets. For
DP-Logits after inspection of the histograms of the l2 norms of the logits we chose the values shown
in the Table. 4.

We report our results in terms of noise multiplier, m = σ
S . We chose the following values:

m ∈ {5× 10−4, 10−3, 5× 10−3, 0.01, 0.05, 0.1, 0.5, 1.0}, for DP-SGD

m ∈ {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 0.01, 0.05, 0.1, 0.5, 1.0}, for DP-Logits

C Further Results

In this section, we will present our results for the defense against the membership inference attacker
for all the datasets, separately. Fig. 3 shows our results after application of DPSGD for both LRN
and LRN-Free adversaries. The LRN adversary is a learning-based adversary adopted from [9] that
utilized one shadow model and one attack model to perform the membership inference attack. Each
bubble indicates a different noise level and the size of the bubbles are proportional to the noise. We
can observe that by adding more noise the performance of the attacker drops (lower AUC values) but
also the utility of the victim model decreases. The ideal attack would have an AUC=0.5 and accuracy
close to the accuracy of the base classifier where no DP method is applied.

Fig. 4 shows the effect of applying DP-Logits. Again, different noise levels are shown with bubbles
and the size of the bubbles is proportional to the amount of noise. Compared to DP-SGD we can see
that the performance of the attacker drops faster for lower noise levels.
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Figure 3: The effect of applying DPSGD during the training on all the datasets. We can observe that
higher noise levels provide better protection against both adversaries but also reduce the accuracy of
the victim model. Ideally, we are looking for a noise level with highest accuracy of the target model
and lowest AUC value.
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Figure 4: AUC versus accuracy of the target model for different datasets when the DP-Logits method
is applied. The orange circles show the performance of the LRN-Free adversary and the blue circles
show the performance of the LRN adversary. The size of the circles are proportional to the value of
the noise multiplier. The pink circle shows the region of the ideal defense where the utility of the
victim model is still high but attacker is completely unsuccessful.
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