
Empirical quantification of privacy loss with
examples relevant to the 2020 US Census

Abraham D. Flaxman
Department of Health Metrics Sciences

University of Washington
Seattle, WA, USA
abie@uw.edu

Abstract

The 2020 US Census will use differential privacy for disclosure avoidance, em-
ploying a new algorithm called TopDown to guarantee privacy loss of at most
ε. However, it is possible that there is some slack in the bound (which is proven
using the sequential composition theorem), and in practice, the privacy loss will be
substantially less than ε.
In this paper, I develop an empirical measure of privacy loss, and apply it to three
example algorithms, inspired by some aspects of TopDown, to better understand
how the empirical privacy loss might compare to the theoretical guarantee.
My results suggest that (1) it is possible to quantify privacy loss empirically in a
reasonable amount of time, at least for counting algorithms like TopDown; and
(2) it is likely that the empirical privacy loss of hierarchical counting algorithms
like TopDown is substantially lower than the privacy bound derived from the serial
composition theorem.

1 Introduction

The 2020 US Census will use a new approach to disclosure avoidance to protect respondents’ data.[2]
This approach relies on ε-Differential Privacy (DP), a mathematical definition of privacy that has
been developed over the last decade and a half in the theoretical computer science and cryptography
communities. ε-DP is not an algorithm, it is a property that an algorithm might satisfy.[4]

The Census Bureau has developed their algorithm, TopDown, to be ε-DP with low error, by applying
a geometric mechanism repeatedly, at multiple levels of a geographic hierarchy, and using constrained
optimization to combine the noisy measurements and ensure consistency at each level.[1] Although
the sequential composition theorem of DP ensures that the total privacy loss of TopDown is at most ε,
it is possible that this inequality is not tight.

To better understand how much privacy will be delivered by TopDown, I investigated the privacy
loss of an idealized top-down algorithm and compared it to other simple counting algorithms. My
estimates of empirical privacy loss relied on a nonparametric method from machine learning (kernel
density estimation), and offer directions for future application of sophisticated machine learning
tools.

2 Methods

An algorithm A is ε-DP if for each possible output P , for any pair of datasets D and D′ that are the
same everywhere except for on one person’s data,

Pr [A(D) = P] ≤ exp (ε) Pr [A(D′) = P] .

Preprint. Under review.

At a high level, the TopDown algorithm produces differentially private counts of people in multiple
demographic groups for hierarchically nested areal units (e.g. census tracts in counties in states). To
do this, it repeats two steps at multiple levels of a geographic hierarchy (from the top down, hence
the name). First, it adds noise from an appropriate probability distribution to the exact data counts
to produce a set of noisy counts. Then, it adjusts these counts to be close as possible to the noisy
counts, subject to the constraints that all counts be non-negative and consistent with each other and
the higher levels of the hierarchy, and satisfy certain invariants and other inequalities. These two
steps are performed for each geographic level, from the coarsest to the finest. Each level is designed
to exhaust a privacy budget of εi, so, by the sequential composition theorem, the entire algorithm
achieves ε-DP for ε =

∑6
i=1 εi.

2.1 Simulation strategy for generating synthetic individuals to count

To better understand how DP counting algorithms perform, I generated a synthetic population of
N individuals, each with a location specified by J hierarchically nested levels, designed to have an
average of µ individuals per location. I represented this database as matrix D with N rows and J
columns, where row Di represented the areal unit inhabited by individual i. To assign this areal unit,
for each individual i, for each level of the spatial hierarchy j, I sampled the location uniformly at
random, Dij ∼U {0, 1, . . . , C − 1}, where C =

⌊
(N/µ)

1/J
⌋

is the number of children for every
areal unit in the spatial hierarchy before level J (e.g. the number of census tracts in each county is C
in my simulation).

To find the exact total count (TC) for each location at any level of the spatial hierarchy, I grouped the
database D by spatial area and counted how many individuals were in each areal unit:

TCj1,j2,...,jJ′ =
∑
i

1 [Di,1 = j1 ∧Di,2 = j2 ∧ . . . Di,J′ = jJ′] .

2.2 Three DP algorithms for counting total individuals

Geometric Noise: To generate ε-DP counts from exact counts, I used the geometric mechanism to
add noise to the exact counts for the most fine-grained areal units in the spatial hierarchy (abbreviated
GDPC for geometric DP count):

GDPCj1,j2,...,jJ = TCj1,j2,...,jJ +Xj1,j2,...,jJ ,

whereXj1,j2,...,jJ ∼ G(ε) is drawn from a two-tailed geometric distribution with parameter ε, defined
by the following equation

Pr[G(z) = k] =
(1− exp(−z)) exp(−z|k|)

1 + exp(−z)
.

The output of this algorithm is the list of GDPCj1,j2,...,jJ values for all tuples (j1, j2, . . . , jJ).

Raked Geometric Noise: To capture a key element of the TopDown algorithm, I also generated ε-DP
counts from exact counts hierarchically, by “raking” the noisy counts at each level to sum to the noisy
count from the level above.

To be precise, for level J ′ of the spatial hierarchy, I first calculated noisy counts analogous to GDPC,
but using only a 1/(J + 1) portion of the total privacy budget:

NoisyCj1,j2,...,jJ′
= TCj1,j2,...,jJ′ +Xj1,j2,...,jJ′ ,

where Xj1,j2,...,jJ′ ∼ G(ε/(J + 1)). I then obtained the raked DP counts (RDPC) by scaling the
noisy counts for the children of each areal unit at level J ′ − 1 of the spatial hierarchy, so that the sum
of raked counts at level J ′ was equal to the raked DP count for their parent:

RDPCj1,j2,...,jJ′ = NoisyCj1,j2,...,jJ′
·

(
RDPCj1,j2,...,jJ′−1∑C

j′=1 NoisyCj1,j2,...,jJ′−1,j
′

)

To start this process, I defined the RDPC for J ′ = 0 as RDPC{} = N + X{}, where X{} ∼
G(ε/(J + 1)).

2

The output of this algorithm is the list of RDPCj1,j2,...,jJ′ values for all tuples (j1, j2, . . . , jJ′) for
all J ′ ≤ J .

Averaged Geometric Noise: As a comparison, I considered a algorithm which produced an average
multiple noisy measurements that is provably ε-DP. As with the raked approach, I split the total
privacy budget equally into P parts, but I then used each portion to run the geometric mechanism
with the smaller epsilon, and obtained the Average-of-Geometrics DP counts (ADPC) from their
arithmetic mean:

ADPCj1,j2,...,jJ =
1

P

P∑
p=1

GDPCp
j1,j2,...,jJ

,

where GDPCp
j1,j2,...,jJ

is the output of an independent replicate of the GDPC algorithm with privacy
budget ε/P .

2.3 Empirical estimation of privacy loss

Differentially private algorithms are often engineered to achieve a guaranteed maximum level of
privacy loss (for example GDPC, RDPC, and ADPC are all ε-DP). However, in complex algorithms
like TopDown or RDPC, this bound on the privacy loss might have room for improvement. I tested
two approaches to empirically measuring privacy loss, to see how the theoretical bounds of ε from
the algorithms above compare to the privacy loss demonstrable in practice.

The most direct way to empirically investigate the privacy loss of an algorithm A like those from the
previous section is to search for databases D and D′ that differ on a single row and an event E that
can serve as a witness to the gap between Pr[A(D) ∈ E] and Pr[A(D′) ∈ E]. Estimating the ratio
of these probabilities is straightforward, but computationally intensive, and searching the space of
near-databases and events is also difficult to do in general. This approach has been developed in prior
work by Ding et al (2019).[3] In the case of count queries with the D defined in the previous section,
the search simplifies substantially. The symmetric nature of the database means we can focus on
changing the first row, without loss of generality, and the discrete nature of the output means we can
restrict our attention entirely to events E of the form {errorj1,j2,...,jJ = k} or {errorj1,j2,...,jJ ≥ k}
where errorj1,j2,...,jJ = A(D)j1,j2,...,jJ′ − TCj1,j2,...,jJ′ , where k is any integer.

Direct estimate: I ran GDPC, RDPC, and ADPC 500 times with a single synthetic database D,
generated as described above, and 500 more times with a perturbed database D′, created by changing
the areal unit of a single individual (moving someone from area 0 to area 1001, where these areas
were chosen arbitrarily). From these repeated realizations of the randomized algorithm, I estimated
the probability of the count for areal unit 0 being k away from the exact total count for this area.
For any k, the log of the ratio of these probabilities constitutes a (noisy) lower bound on ε, and the
maximum over these log-ratios could be used as an empirical estimate of the privacy loss.

Less-obvious estimate: Because of the special structure of count queries, there is a way to avoid
re-running the DP algorithm repeatedly. This can be particularly useful for assessing the empirical
privacy loss of complex algorithms like TopDown. If the difference between the DP count and
the exact count was identically distributed for all areal units, then instead of focusing on only the
areal units containing the individual who’s changed, we could use the residuals for all areal units to
estimate the probability of the event we are after:

Pr
[
errorDj1,j2,...,jJ = k

]
≈
(C∑

j′1=1

C∑
j′2=1

· · ·
C∑

j′J=1

1
[{

errorDj′1,j′2,...,j′J
= k

}])/
CJ =: p̂k,

and
errorDj1,j2,...,jJ =

(
A(D)j1,j2,...,jJ′ − TCj1,j2,...,jJ′

)
,

where A(D) is the vector of DP counts returned by the GDPC, RDPC, or ADPC algorithm.

We can make this estimate with more precision than the direct estimate, using substantially less
computation.

It is also possible to make an estimate of the probability D′ yields error of k without repeatedly
running the DP algorithm. This relies on the observation that, for count queries, a change to a single

3

row of data can change the exact count by at most one for any areal unit. Therefore

Pr
[
errorD

′

j1,j2,...,jJ = k
]
'

Pr
[
errorDj1,j2,...,jJ = k + 1

]
, if k ≥ 0;

Pr
[
errorDj1,j2,...,jJ = k − 1

]
, if k ≤ 0;

which we can also approximate by examining the residuals for all areal units:

Pr
[
errorD

′

j1,j2,...,jJ = k
]
'

(C∑
j′1=1

C∑
j′2=1

· · ·
C∑

j′J=1

1
[{

errorDj′1,j′2,...,j′J
= k ± 1

}])/
CJ .

With these estimate in mind, I ran GDPC and RDPC for a range of databases D, with multiple values
of N , J , µ, and ε and calculated log p̂k/p̂k−1 for all |k| ≤ K. I used the maximum log-ratio as an
empirical comparator with the theoretical privacy loss ε. I also searched for the appropriate value
of K to bound the range of residuals, which I parameterized by selecting a residual percentile and
scaling factor (e.g. take K to be 1.5 times the 95-th percentile of the residuals).

As with the direct estimates, I found that the stochastic noise in p̂k led to undesirable fluctuations
in the empirical privacy loss bounds, and to address this, I used Gaussian kernel density estimates
to smooth the approximations of p̂(k) as a function of k. I experimented with a range of bandwidth
parameters for the Gaussian, and used log p̂(k)/p̂(k + 1) to create a less noisy estimate of the
empirical privacy loss.

3 Results

My direct estimate of privacy loss took 2 hours of compute time to produce 500 samples, but was too
noisy to be interpretable. By uses a comparison of

{
A(D)j1,j2,...,jJ′ − TCj1,j2,...,jJ′ ≥ k

}
(instead

of equal to k), I did obtain results visually consistent with the proven DP bound of ε.

My less-obvious estimate of privacy loss took 20 seconds of compute time even though I ran it for a
range of ε values. It produced bounds on privacy loss showing that geometric noise empirical privacy
loss matching its theoretical bound, averaged geometric noise (with P = 4) has empirical privacy
loss roughly half of the theoretical bound, and raked geometric noise (with J = 3) has empirical
privacy loss roughly one quarter of the theoretical bound. (Figure 1)

200 100 0 100 200
Error in DP Count (people)

0

50

100

Nu
m

be
r o

f u
ni

ts (a)

200 100 0 100 200
Error in DP Count (people)

0.050
0.025
0.000
0.025
0.050

Em
pi

ric
al

 P
riv

ac
y

Lo
ss

(b)

 = 0.025, geometric noise
 = 0.1, raked
 = 0.05, averaged

Figure 1: Panel (a) shows the distribution of residuals (DP - Exact) for GDPC, RDPC, and ADPC,
each with an ε selected to have empirical privacy loss of 0.025; and panel (b) shows the “less-obvious”
estimate of empirical privacy loss, smoothing with a kernel of bandwidth 0.15. This shows that for
GDPC, the empirical privacy loss is equal to the budget of 0.025, which for ADPC is it half of the
budget of 0.05 and for RDPC is one quarter of the budget of 0.1.

4 Discussion and Conclusion

This work is preliminary and certainly not without limitations. My biggest concern with the general
approach to empirically measuring privacy loss is that I could have missed something; if there is
some alternative event E which witnesses correlation introduced by the counting algorithm, this
could prove there is greater privacy loss than either of the methods I described above would discover.
On the other hand, this work provides some evidence that the theoretical bounds produced by the
sequential composition theorem are not always tight, and gives a way to estimate how much more
private an algorithm like TopDown may be in practice.

4

References
[1] John Abowd, Daniel Kifer, Brett Moran, Robert Ashmead, Philip Leclerc, William Sexton,

Simson Garfinkel, and Ashwin Machanavajjhala. Census TopDown: Differentially private data,
incremental schemas, and consistency with public knowledge. Technical report, U.S. Census
Bureau, 2019.

[2] John M. Abowd and Simson L. Garfinkel. Disclosure avoidance and the 2018 Census test: Release
of the source code. https://www.census.gov/newsroom/blogs/research-matters/
2019/06/disclosure_avoidance.html, June 2019.

[3] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer. Detecting
violations of differential privacy. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 475–489. ACM, 2018.

[4] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

Source code to reproduce the methods and results described in this paper can be found at https:
//github.com/aflaxman/eqpl_w_examples.

I would like to thank Andrew Dolgert for calling my attention to the similarities between the TopDown
algorithm and raking.

5

https://www.census.gov/newsroom/blogs/research-matters/2019/06/disclosure_avoidance.html
https://www.census.gov/newsroom/blogs/research-matters/2019/06/disclosure_avoidance.html
https://github.com/aflaxman/eqpl_w_examples
https://github.com/aflaxman/eqpl_w_examples

	Introduction
	Methods
	Simulation strategy for generating synthetic individuals to count
	Three DP algorithms for counting total individuals
	Empirical estimation of privacy loss

	Results
	Discussion and Conclusion

