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Abstract

We present three new algorithms for constructing differentially private synthetic
data—a sanitized version of a sensitive dataset that approximately preserves the
answers to a large collection of statistical queries. All three algorithms are oracle-
efficient in the sense that they are computationally efficient given access to an
optimization oracle, which can implemented using many existing (non-private)
sophisticated optimization tools such as integer program solvers. While the accu-
racy of the synthetic data is contingent on the oracle’s optimization performance,
the algorithms satisfy differential privacy even in the worst case. For all three
algorithms, we provide theoretical results as well as preliminary empirical eval-
uation, which shows that the algorithms can efficiently and accurately answer a
large collection of queries on the Adult dataset.

1 Introduction

The wide range of personal data collected from individuals has facilitated many studies and data
analyses that inform decisions related to science, commerce, and government policy. Since many
of these rich datasets also contain highly sensitive personal information, there is a tension between
releasing useful information about the population and compromising the privacy of individuals. In
this work, we consider the problem of answering a large collection of statistical (or linear) queries
subject to the constraint of differential privacy. Formally, we consider a data domain X = {0, 1}d
of dimension d and a dataset D ∈ Xn consisting of the data of n individuals. Our goal is to ap-
proximately answer a large class of statistical queries Q about D. A statistical query is defined by
a predicate φ : X → [0, 1], and the query qφ : Xn → [0, 1] is given by q(D) = 1

n

∑n
i=1 φ(Di)

and an approximate answer a ∈ [0, 1] must satisfy |a − q(D)| ≤ α for some accuracy parameter
α > 0. To preserve privacy we work under the constraint of differential privacy [6]. Answering sta-
tistical queries provides the basis for a wide range of data analysis tasks, as many machine learning
algorithms can be simulated using statistical queries [17].

An especially compelling way to perform private query release is to release private synthetic data —
a sanitized version of the dataset that approximates all of the linear queries in the class Q. Notable
examples of private synthetic data algorithms are the SmallDB algorithm [1] and the private mul-
tiplicative weights (PMW) mechanism [14] (and its more practical variant MWEM (multiplicative
weights with exponential mechanism) [13]), which can answer nearly exponentially many queries in
the size of the input dataset and also achieve nearly optimal sample complexity [3]. Unfortunately,
both algorithms involve maintaining a probability distribution over the data domain X , and hence
have running time that is exponential in the dimension d. Moreover, under standard cryptographic
assumptions, this running time is necessary in the worst case [21, 22].
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To build more efficient solutions for constructing private synthetic data, we consider oracle efficient
algorithms that rely on a black-box optimization subroutine. The optimization problem is NP-hard
in the worst case. However, we invoke practical optimization heuristics for this subroutine (namely
integer program solvers such as CPLEX and Gurobi). These heuristics work well on many real-
world instances. Thus the algorithms we present are more practical than the worst-case hardness
would suggest is possible. While the efficiency and accuracy of our algorithms are contingent on
the solver’s performance, differential privacy is guaranteed even if the solver runs forever or fails to
optimize correctly.

Overview of our results. To describe our algorithms, we will first revisit a formulation of the
query release problem as a zero-sum game between a data player who maintains a distribution D̂
over X and a a query player who selects queries from Q [15, 10]. Intuitively, the data player aims
to approximate the private dataset D with D̂, while the query player tries to identify a query which
distinguishes between D and D̂. Prior work [15, 10] showed that any (approximate) equilibrium
for this game gives rise to an accurate synthetic dataset. Moreover, existing algorithms including
MWEM can be viewed as performing equilibrium computation for this game through no-regret
dynamics: in each of a sequence of rounds, one player updates its strategy using a no-regret online
learning algorithm, while the other player plays an approximate best response. In MWEM, the data
player uses the multiplicative weights (MW) method as the no-regret algorithm, and the query player
approximately best responds with the exponential mechanism (see appendix).

Our first two algorithms FEM and sepFEM follow the same pattern of no-regret dynamics in
MWEM, but importantly replace the MW method with two different variants of the follow-the-
perturbed-leader (FTPL) algorithm [16]—Non-Convex-FTPL [19] and Separator-FTPL [20]—both
of which perturb the objective of an optimization problem and solve the perturbed problem via an
optimization oracle. The two algorithms we design both satisfy (ε, δ)-differential privacy, and have
error rates of Õ(d3/4 log1/2 |Q|/(nε)1/2) and Õ

(
d5/8 log1/4 |Q|/(nε)1/2

)
. Although the accuracy

analysis requires repeated sampling from the FTPL distribution (and thus repeatedly solving per-
turbed integer programs), our experiments show that the algorithms remain accurate even with a
much lower number of samples, which allows much more practical running time.

Our third algorithm takes the dual approach of MWEM and improves upon the existing algorithm
DualQuery [10]. Unlike MWEM, DualQuery has the query player running MW over the query
classQ, which is often significantly smaller than the data domain X , and has the data player playing
best response, which can be computed non-privately by solving an integer program. Since the query
player’s MW distribution is a function of the private data, DualQuery approximates this distribution
from a collection of samples drawn from it. Each draw from the MW distribution can be viewed
as a single instantiation of the exponential mechanism, which provides a bound on the privacy loss.
We improve DualQuery by leveraging the observation that the MW distribution changes slowly
between rounds in the no-regret dynamics. Thus can reuse previously drawn queries to approximate
the current MW distribution via rejection sampling. By using this technique, our algorithm DQRS
(DualQuery with rejection sampling) reduces the number of times we draw new samples from the
MW distribution and also the privacy loss, and hence improves the privacy-utility trade-off. We
empirically demonstrate that DQRS improves the accuracy guarantee DualQuery. Even though
they have worse accuracy performance than FEM and sepFEM, the dual algorithms DualQuery
and DQRS run substantially faster, since they make many fewer oracle calls.

Organization. We describe the algorithms FEM and sepFEM in the main body of this extended
abstract and defer the details of DQRS to the appendix.

2 Query Release Game

The goal in this paper is to privately solve the query release problem which goes as follows: Given
a class of queries Q over a database D, we want to output a differentially private synthetic dataset
D̂ such that for any query q ∈ Q we have low error:

error(D̂) = |q(D)− q(D̂)| ≤ α

We model the query release problem as a zero-sum game between a data-player and a query player.
The data player has action set equal to the data universe X and the query player has action set equal
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to the query class Q. The players’ payoff for actions x ∈ X and q ∈ Q is given by:

A(x, q) := q(D)− q(x) (1)

The data player wants minimizes the payoff A(x, q) while the query player maximizes it. We make
the assumption that Q is closed under negation. That is, for every query q ∈ Q there is a negated
query q̄ ∈ Q where q̄(D) = 1 − q(D). If Q is not closed under negation, we can simply add
negated queries to Q. By the results of [15, 10] show that if (D̂, Q̂) ∈ ∆(X ) × ∆(Q) forms
an α-approximate equilibrium of the game, then D̂ is also 2α-accurate—that is for all q ∈ Q,
error(D̂) = |q(D)− q(D̂)| ≤ 2α.

To compute such an equilibrium privately, we will utlitize no-regret online learning algorithm. The
regret of an online learning algorithm is defined as follows.

Definition 2.1 (Regret). Let L be an online learning algorithm with action domain A . Every round
t, L chooses an action at ∈ A and suffers a loss `t(at). For any sequence of T losses `1, . . . , `T ,
the regret of A, is given by

RL(T ) =

T∑
t=1

`(at)−min
a

T∑
t=1

`(a)

In this work, we take advantage of the oracle-efficient algorithms Non-Convex-FTPL from [12, 19]
and Separator-FTPL from [20] with bounded expected regretRNC(T ) andRSep(T ) respectively. We
will defer their formal descriptons and regret guarantees to the appendix.

3 Oracle-Efficient Algorithms: FEM and sepFEM

Private No-Regret Dynamics. We first outline a general framework for solving the query release
problem using no-regret dynamics, and view our two algorithms FEM and sepFEM as intantiations
of this framework. The query player plays exponential mechanism which is an optimal private
mechanism with known regret bounds and the data players plays a non-private no-regret algorithm.
Suppose that the both query and data player play the zero-sum game as described for T rounds and
incur regret equal toRq(T ) andRd(T ) respectively. Then by the seminal result of [9], the average of
the data player actions constitudes a synthetic dataset with error bounded by O (Rq(T ) +Rd(T )).

Algorithm 1: General Framework of Private No-Regret Dynamic
Parameters: Target sampling error γ, Target failure probability β
Input: A dataset D, Queryset Q, No-regret algorithm A, Number of rounds T
ε0 = ε√

2T log (1/δ)
;

for t← 1 to T do
Generate D̂t with no regret algorithm A;
Construct (1/n)-sensitive function St(D, q) = q(D)− q(D̂t);
Sample: qt ∼ME(D,St,Q∪ Q̄, ε0);
Algorithm A incurs loss A(D̂, qt);

end
Output: ∪tD̂t

We provide the privacy guarantee that works for any no-regret algorithm A.

Theorem 1 (Privacy). Let 0 < δ < 1. For any no-regret algorithm A, Algorithm 1 is (ε, δ)-
differentially private.

But the accuracy depends on the choice of A. We now plug in two different no-regret algorithms
into 1 and prove the corresponding accuracy theorems.

Instantiations with FTPL algoritms. We present a general theorem for the accuracy bound of
algorithm 1 given access to an algorithm A with sublinear regret.
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Theorem 2 (Accuracy). Suppose that the data player in algorithm 1 generates the sequence D̂ =
(x1, . . . , xTs) by sampling from algorithmA with expected regretRA(T ) with respect to minimizing
payoff function A : X × Q → [0, 1] from equation 1. Let the regret of the query player be at most
REM(T ) with probability 1/2β. Then the error on D̂ is bounded by,

sup
q∈Q
|q(D)− q(D̂)| ≤ RA(T ) +REM(T )

T
+ γ

We can get different algorithms for solving the query release problem by selecting the no-regret
strategy played by the data player. The next two corollaries provide the accuracy bound for algorithm
1 when the data player plays according to strategy Non-Convex-FTPL and Separator-FTPL .
Corollary 2.1 (FEM Accuracy). With probability at least 1−β, the algorithm FEM finds a synthetic
database that answers all queries in Q with additive error

α = Õ

(
d3/4 log1/2 |Q| · log1/2(1/δ) log1/2(1/β)

n1/2ε1/2

)
Corollary 2.2 (sepFEM Accuracy). With probability at least 1 − β, algorithm sepFEM finds a
synthetic database that answers all queries in Q with additive error

α = O

(
d5/8 log1/4 |Q| · log1/2(1/δ) log1/2(1/β)

n1/2ε1/2

)

4 Experiments on the Adult dataset

Figure 1: Average error and maximum error on Adult dataset . Comparison for different levels of
privacy where the number of queries is 100,000.

We evaluate the algorithms presented in this paper on a 100, 000 3-way marginal queries over the
Adult dataset from the UCI repository [4]. For this experiment we used the first 6 categorical
features of Adult and did one-hot encoding of the features resulting in d = 57 binary features.
We compare the performance of the algorithms presented in this paper againts DualQuery with
parameters as in [11]. To measuse the accuracy of the algorithms we used the average error(

1
|Q|
∑
j |qj(D)− qj(D̂)|

)
and the max error

(
maxj |qj(D)− qj(D̂)|

)
. The implementation was

writen in python, and we used the Gurobi solver for mixed-integer-programming. We ran the exper-
iments on a machine with 4-core Opteron processor and 192 Gb of ram.
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A Differential Privacy Tools

Definition A.1. A mechanism M : X → R satisfies (ε, δ)-differential privacy if for every S ⊂ R
and for all neighboring datasets D,D′ ∈ X , the following holds:

Pr [M(D) ∈ S] ≤ eεPr [M(D′) ∈ S] + δ

Definition A.2 (Sensitivity). The sensitivity of a function f with range R is

∆f := max
D,D′:|D4D′|=1,r∈R

|f(D, r)− f(D′, r)|.

Definition A.3 (Linear threshold functions). A linear threshold function φp : X → {0, 1}, is a
linear mapping defined by a real valued set P and vector coefficient φ. With

φp(x) =

{
1 if 〈φ, x〉 ∈ P
0 otherwise

Definition A.4 (Statistical linear queries). Given as predicate a linear threshold function φ, the linear
query qφ : Xn → [0, 1] is defined by

qφ(D) =

∑
x∈D φ(x)

|D|

Theorem 3 (Advanced Composition). A set of k mechanisms M1, . . .Mk where each Mk is εk
-differentially private. Satisfies (ε′, δ)-differential privacy under k-fold adaptive composition for:

ε′ =

k∑
i=1

εi(e
εi − 1) +

√√√√( k∑
i=1

ε2i

)
ln

(
1

δ

)
1

2

Proof. For some mechanismM denote the privacy loss for all neighboring dataset D, D′ and all
outcomes r ∈ R as:

LM(r) = ln

(
Pr [M(D)] = r)

Pr [M(D′)] = r)

)
And let the privacy loss for running k mechanism be:

L(∪kiMi)(r) =

k∑
i=1

LMi(r)

Since eachMi is εi-differentially private we have for all r that LMi(r) ≤ εi and, using lemma (ref
here), E [LMi

(r)] ≤ εi(eεi−1). The privacy loss is a function that depends on the randomized output
of the private mechanisms ri. Now we apply Azuma’s inequality in Lemma ??. Let r1, . . . , ri−1 be
the output of mechanismsM1, . . .Mi−1 then for all a, a′ ∈ R∣∣∣E [L(∪kiMi)|r1, . . . , ri−1, r = a

]
− E

[
L(∪kiMi)|r1, . . . , ri−1, r = a′

]∣∣∣ ≤ εi
Then by Azuma’s:

Pr
[
L(∪kiMi)(r1, . . . , rk) ≥ E

[
L(∪kiMi)

]
+ t
]
≤ exp

(
−2t2∑k
i=1 ε

2
i

)

Letting E
[
L(∪kiMi)

]
=
∑k
i=1 εi(e

εi − 1) and t =

√(∑k
i=1 ε

2
i

)
ln
(

1
δ

)
1
2

Pr

L(∪kiMi)(r1, . . . , rk) ≥
k∑
i=1

εi(e
εi − 1) +

√√√√( k∑
i=1

ε2i

)
ln

(
1

δ

)
1

2

 ≤ δ
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In this work we make the assumption that we have access to an optimization oracle such that, given a
set of statistical linear queries, it outputs a data record fromX such that it approximatelly maximizes
then answer score on the query set.

Definition A.5 (Approximate Linear Optimization Oracle). Given as input a set of n statistical linear
queries {qi} and a d-dimentional vector σ, an α-approximate linear optimization oracle outputs

x̂ ∈ arg min
x∈X

{
n∑
i=1

qi(x)− 〈x, σ〉

}
Definition A.6 (Exponential Mechanism [18]). Given some database D, arbitrary range R, and
score function S, the exponential mechanismME(D,S,R, ε) selects and outputs an element r ∈ R
with probability proportional to exp

(
εS(D,r)

2∆S

)
, where ∆S is the sensitivity of S.

Lemma 4 (Theorem 3.12 in [7]). The exponential mechanismME(x, S,R) is (ε, 0)-differentially
private.

Theorem 5 (Exponential Mechanism Error - Corollary 3.12 in [7]). . Fixing a database x, let
OPT s(x) denote the max score function s. Then, with probability 1− β the error is bounded by:

OPT s(x)− s(ME(x, u,R)) ≤ 2GSs
ε

(ln |R|/β)

B Missing Proof in Section 2

B.1 Equilbrium of the Game

Here we show that solving the query release game reduces to solving for the equilibrium of the zero
sum game defined above. We make use von Neumann’s minimax theorem which states that any
zero-sum game has a unique value. Let ∆(X ) and ∆(Q) be the set of probability distributions over
X and Q. According to von Neumann’s minimax theorem, if each player plays from a probability
distribution over their actions (u ∈ ∆(X ) is the data player’s action and w ∈ ∆(Q) is the query
player’s action), then:

min
u∈∆(X )

max
w∈∆(Q)

A(u,w) = max
w∈∆(Q)

min
u∈∆(X )

A(u,w) = vA

where
A(u,w) := Ex∼u,q∼wA(x, q)

is the expected payoff and vA is the value of the game.

Definition B.1 (α-approximate equilibrium). Let α > 0. Let A be the payoffs for a two player,
zero-sum game with action sets X ,Q. Then a pair of strategies u∗ ∈ ∆(X ) and w∗ ∈ ∆(Q) form
an α-approximate mixed Nash equilibrium if

A(u∗, w) ≤ va + α and A(u,w∗) ≥ vA − α

for all strategies u ∈ ∆(X ) and w ∈ ∆(Q). Note that A(u∗, w) denotes the expected payoff for the
best (minimizing) data response u∗ andA(u,w∗) denotes the expected payoff for best (maximizing)
query response w∗.

Finally, the the following theorem shows that the α-approximate nash equilibrium is a solution for
the query release game:

Theorem 6. If (u∗, w∗) is the α-approximate equilibrium of a zero sum game between a data-player
with action set X and a query player with actions set Q∪ Q̄ then for every q ∈ Q ∪ Q̄, we have

|q(u∗)− q(D)| ≤ α

Proof of Lemma 6.

Proof. We first show that the value of the game vA is zero. Let D̂ ∈ ∆(X ) be the normalized
histogram distribution of D. We consider the following cases:
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1. Any query w and any data strategy over D̂ has zero payoff:

A(D̂, w) = Ex∼D̂,q∼w[q(D)− q(X)] = 0.

Since the query player wants to maximize the payoff, it follows that the vA ≤ 0:

vA = max
w∈∆(Q)

[
min

u∈∆(X )
A(u,w)

]
≤ max
w∈∆(Q)

A(D̂, w) = max
w∈∆(Q)

0 = 0

2. For any data strategy u, the payoff of the query q is equal to the negation of the payoff of
the negated query q̄, i.e. A(u, q) = −A(u, q̄):

A(u, q̄) = Ex∼u[q̄(D)− q̄(x)] = Ex∼u[q̄(x)− q̄(D)] = −A(u, q̄).

Because the query strategy places equal weight on q and q̄, the expected payoff A(u, q) is
zero. Since the data player minimizes the payoff, va ≥ 0:

vA = min
u∈∆(X )

[
max

w∈∆(Q)
A(u,w)

]
≥ min
u∈∆(X )

A(u, q) = min
u∈∆(X )

0 = 0

Thus vA = 0 as desired. Let (u∗, w∗) by the α-approximate equilibrium. From the left inequality
in Definition B.1, we know that when the data player plays u∗ and the query player plays q, the
expected payoff is A(u∗, w) = q(D) − q(u∗) ≤ α. Likewise, if the data player plays u∗ and
the query player plays the negated query q̄, the expected payoff is A(u∗, q̄) ≤ α and A(u∗, q̄) =
q̄(D)− q̄(u∗) = 1− q(D)− (1− q(u∗)) = −q(D) + q(u∗). Thus, we have q(D)− q(u∗) ≥ −α
Therefore, we have |q(u∗) − q(D)| ≤ α as desired, so the setup of the α-approximate equilibrium
game satisfies the query release problem. Since the approximate data equilibrium u∗ is also the
synthetic data, we just need to find u∗, which will then give us a query answer q(u∗) that is accurate
and private.

The next theorem by Freund and Schapire shows that in a zero-sum game, if the two players main-
tains a distribution using a no-regret algorithm, then both of the players’ actions converge to an
α-approximate equilibrium.
Theorem 7 (Freund and Schapire[8]). Let α > 0, and let A(i, j) ∈ [−1, 1]m×n be the payoff
matrix for a zero-sum game. Suppose the first player uses a no-regret strategy over their actions
to play distributions p1, . . . , pT and obtains average regret R1(T ), while the second player plays
approximate best responses x1, . . . , xT with regret R2(T ). If T is selected such that R1(T ) =
R2(T ), then the empirical distributions

1

T

T∑
t=1

pt and
1

T

T∑
t=1

xt

form an (R1(T ) +R2(T ))-approximate Nash equilibrium.

From theorem 7 and 6, it follows that having the data player and the query player playing algorithms
with known regret bounds leads to a solution to the query release game. In the next section we
introduce a general framework for analysing private no-regret dynamics.[5].

C Missing Proof in Section 3

Proof of Theorem 1.

Proof. By the advanced composition theorem, running a composition of k ε0-private mechanisms
is (ε, δ)-private for

ε =
√

2k log (1/δ)ε0 + kε0(exp (ε0)− 1)

The privacy cost of each round is ε0 and there are k = T rounds. We plug in ε0 and k accordingly
into the advanced composition theorem to get

ε =
√

2T log (1/δ)ε0 + Tε0(exp (ε0)− 1).
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Since exp (ε0) ≤ 1 + 2ε0 for 0 < ε0 < 1, we can simplify the expression to get ε ≤√
2T log (1/δ)ε0 + 2Tε0

2. Solving for ε0 we find that

ε0 =

√
2T log (1/δ) + 8Tε−

√
2T log (1/δ)

4T

=
1

4T
· 8Tε√

2T log (1/δ) + 8Tε+
√

2T log (1/δ)

=
2ε√

2T log (1/δ)
(

1 +
√

1 + 4ε
log (1/δ)

)
=

ε
√

2
2

(
1 +

√
1 + 4ε

log (1/δ)

)√
T log (1/δ)

<
ε

√
2

2 (1 + 1)
√
T log (1/δ)

Thus we get ε0 as desired.

Next we describe the details of algorithm FEM and the accuracy guarantee proof.

Algorithm 2: FEM
Input: A dataset D, A queryset Q
s = 8 log (4T/β)

α2 ;

η =
√

1+log d
125dT ;

Let σtj ∼ Exp(η);

Sample s data values {xtj} according to arg maxx

{∑t−1
i=1 qi(x)− xσtj

}
;

Output: D̂t := {xt1, xt2, . . . , xts}

The accuracy proof proceeds in two steps. First we show that the sample distribution D̂t played
by the data player is close the true distribution Dt and we show that the query player plays an
approximate best response. Then, by theorem 7, we show that algorithm 2 finds an approximate
equilibrium.

We use Chernoff bound.
Lemma 8 (Chernoff bound [7]). Let X1, . . . , Xm be i.i.d random variables such that 0 ≤ Xi ≤ 1
for all i. Let S = 1

m

∑m
i=1Xi denote their mean and let µ = E[S] denote their expected mean.

Then,
Pr
[
|S − µ| > T ] ≤ 2 exp (−2mT 2)

]
Lemma 9. Let β ∈ (0, 1) and let Dt be the true distribution over X . Suppose we draw

s =
8 log (4T/β)

α2

samples {xti} from Dt to form D̂t. Then with probability at least 1− β/2, we have∣∣∣∣∣1s
s∑
i=1

q(xti)− q(Dt)

∣∣∣∣∣ < α

4

for all 0 ≤ t ≤ T

Proof. For any fixed t, note that 1
s

∑s
i=1 q(x

t
i) is the average of the random variables

q(xt1), q(xt2), . . . , q(xts). Also E[q(xt)] = q(Dt) for all 0 ≤ t ≤ T . Thus by the Chernoff bound
and our choice of s,

Pr

[∣∣∣∣∣1s
s∑
i=1

q(xti)− q(Dt)

∣∣∣∣∣ > α

4

]
≤ 2 exp (−sα2/8) = β/2T.

10



A union bound over all T rounds gives a total fail probability of at most β/2 as desired.

Lemma 10 (Data Player’s Regret). Given that the data player plays the distributions
D̂1, D̂2 . . . D̂T , the data player achieves an average regret bound of

1

T

T∑
t=1

A(D̂t, qt)−min
x∈X

1

T

T∑
t=1

A(x, qt) ≤ α

4
+ (125 + 5

√
5)

√
d3(1 + log d)

T

for all T rounds with probability at least 1− β/2.

Proof. We calculate the average error per round of the data and query player to find the value of α,
the additive error of each query, with probability at least 1− β using Theorem 7.

Because D̂t approximates Dt with probability at least 1 − β/2, we calculate the average regret
per round when the data player plays with the true distribution Dt. We assume that our oracle
is efficient so α′ = 0. Since the dimension of the perturbation is the dimension of the dataset,
d = logX . We also have D = 1 and L = 1. From the FTPL regret bound [12], since
Eσ
[∑T

t=1A(xt, qt)−minx∈X
∑T
t=1A(xt, qt)

]
=
∑T
t=1A(Dt, qt)−minx∈X

∑T
t=1A(x, qt), the

average regret per round for the data player playing the true distributionDt has the following bound:

1

T

T∑
t=1

A(Dt, qt)−min
x∈X

1

T

T∑
t=1

A(x, qt) ≤ 125ηd2 +
(1 + log d)d

Tη
.

From Lemma 9, we know that with probability at least 1−β/2, the average error per round of sample
distribution D̂t from the true distribution Dt is α/4. Hence, with probability at least 1 − β/2, the
average regret per round for the data player playing the sample distribution D̂t is

1

T

T∑
t=1

A(D̂t, qt)−min
x∈X

1

T

T∑
t=1

A(x, qt) ≤ α

4
+ 125ηd2 +

(1 + log d)d

Tη

Setting η =
√

1+log (d)
125Td , we have

1

T

T∑
t=1

A(D̂t, qt)−min
x∈X

1

T

T∑
t=1

A(x, qt) =
α

4
+ (125 + 5

√
5)

√
d3(1 + log (d))

T

as desired.

We next calculate the upper bound of the average error per round for the query player playing the
exponential mechanism with probability at least 1− β/2.
Lemma 11 (Query Player’s Regret). The query player achieves an average regret bound of

max
q∈Q

1

T

T∑
t=1

A(D̂t, qt)− 1

T

T∑
t=1

A(D̂t, qt) ≤ 2/n

ε0
ln (2T |Q|/β) =

2
√

2

nε

√
T log (1/δ) ln

(
2T |Q|
β

)
for all T rounds with probability 1− β/2.

Proof. Since the sensitivity of the query player’s score function GSs is 1/n, then with probability
1 − β/2T the error for each is round is at most 2/n

ε ln (2T |Q|/β) by Theorem 5. Applying union
bound over T rounds, with probability 1− β/2 the query player’s average regret for T rounds is

max
q∈Q

1

T

T∑
t=1

A(D̂t, qt)− 1

T

T∑
t=1

A(D̂t, qt) ≤ 2/n

ε0
ln (2T |Q|/β) =

2
√

2

nε

√
T log (1/δ) ln

(
2T |Q|
β

)

11



Our final accuracy guarantee follows.
Proof of Theorem 2.1.

Proof. From Lemma 10 and Lemma 11, let RD(T ) and RQ(T ) be the upper bounds for the average
error of the data and query player respectively with probability at least 1− β/2. Then, with proba-
bility at least 1 − β due to the union bound over 2 events, α is the average regret for all rounds by
Theorem 7:

α = RD(T ) +RQ(T )

=
α

4
+ (125 + 5

√
5)

√
d3(1 + log d)

T
+

2
√

2

nε

√
T log (1/δ) ln

(
2T |Q|
β

)
Setting T = 125+5

√
5

2
√

2

nε·[d3(1+log d)]1/2

log
2|Q|
β log1/2 (1/δ)

, we have

3α

4
< 2(250

√
2 + 10

√
10)1/2

[
d3(1 + log d

]1/4
log1/4(1/δ)

n1/2ε1/2

[
2 log1/2

(
2|Q|
β

)
+ log−1/2

(
2|Q|
β

)
lnT

]

α = O

d3/4 · log1/4(1/δ) log1/2
(

2|Q|
β

)
n1/2ε1/2

· polylog (d, n, ε, log(1/δ), log |Q|, log (1/β))



Definition C.1. A set sep(Q) is a small-separator for queries Q if for any two distinct records
x, x′ ∈ X , there exist q ∈ sep(Q) such that q(x) 6= q(x′).

Algorithm 3: sepFEM
Input: A dataset D, the t− 1 queries {q1, . . . , qt−1}, A queryset Q with small separator set

sep(Q)
Parameters: Laplace noise parameters η, The number of samples s
Let q̃ ← sep(Q) and M ← | sep(Q)|;
for i← 1 to s do

Sample noise vector σ ∼ Lap(η)M ;

Get xi ∈ arg maxx

{∑t−1
j=1 qj(x) +

∑M
j=1 σj q̃j(x)

}
;

end
Output: D̂ = {x1, x2, . . . , xs}

Proof of Theorem 2.2.

Proof. Setting η = (5/2)1/2d1/4T−1/2, the data player’s average regret for all T rounds is
RD(T ) = 4

√
10d5/4T−1/2 and the average regret for the query player is RQ(T ) given by lemma

11. If T = 2
√

5d5/4nε

log1/2 (1/δ) log ( 2|Q|
β )

, then, by union bound and by Theorem 7, with probability at least

1− β, the accuracy of sepFEM is:

α = RD(T ) +RQ(T )

= 4
√

10d5/4T−1/2 +
2
√

2

nε

√
T log (1/δ) ln

(
2T |Q|
β

)
Plugging in the value of T ,

α =
8 4
√

5d5/8 log1/4 (1/δ) log1/2
(

2T |Q|
β

)
n1/2ε1/2

12



D DQRS: DualQuery with Rejection Sampling

In this section, we present an improvement from the DualQuery algorithm [11]. In DualQuery , the
query player maintains a distribution over queries using Multiplicative Weights. But the algorithm
can’t directly release the distribution Qt proposed by MW during round t because it depends on the
private data. Instead, for each round t, it takes s samples from Qt to form an estimate distribution
Q̂t. The data player then best-responds against Q̂t. Our algorithm DQRS improves the sampling
step of DualQuery . The basic idea is to apply the rejection sampling technique to generate a sample
from Qt using samples obtained from the distribution in the previous round, i.e., Qt−1. We show
that by taking fewer samples fromQt for each round t, we use less of the privacy budget. The result
is that the algorithm operates for more iterations and obtains better performance.
Theorem 12. DualQuery with rejection sampling (Algorithm 4) takes in a private dataset D ∈
Xn and makes T = O

(
log |Q|
α2

)
queries to an optimization oracle and outputs a dataset D̃ =

(x1, · · · , xT ) ∈ X T such that, with probability at least 1−β, for all q ∈ Qwe have |q(D̃)−q(D)| ≤
α. The algorithm is ρ-CDP for

ρ = O

(
log(|X |T/β) · log3(|Q|)

n2α5

)
.

In contrast, DualQuery (without rejection sampling) obtains the same result except with

ρ = O

(
log(|X |T/β) · log3(|Q|)

n2α7

)
.

To obtain (ε, δ)-differential privacy, it suffices to have ρ-CDP for ρ = Θ(ε2/ log(1/δ). Thus the
guarantee of Theorem 12 can be rephrased as the sample complexity bound

n = O

(
log1.5(|Q|) ·

√
log(|X |T/β) · log(1/δ)

α2.5ε

)
to obtain α-accurate synthetic data with probability 1− β under (ε, δ)-differential privacy.

Algorithm 4: Rejection Sampling Dualquery
Parameters: Target accuracy α ∈ (0, 1), target failure probability β ∈ (0, 1)
Input: dataset D, and linear queries q1, . . . , qk ∈ Q
Initialize: Let Q =

⋃k
i=1 qi ∪ q̄i, and Q1 a uniform distribution on Q

Set T = 16 log |Q|
α2 , η = α

4 , γt = 1
2t2/3

, s = 48 log(3|X |T/β)
α2 , and s̃t = (2γt + 4η)s.

Construct sample S1 of s queries {qi} from Q according to Q1;
for t← 1 to T do

Let q̃ = 1
s

∑
q∈St q;

Find xt with AD(xt, q̃) ≥ maxxAD(x, q̃)− α/4;
for q ∈ Q do
Q̂t+1
q := e−η−γt · exp (−ηAD(xt, q))Qtq;

end
Normalize Q̂t+1 to obtain Qt+1;
Construct St+1 as follows;
for q ∈ St do

Add q to St+1 with probability Q̂t+1/Qt;
Add s̃t independent fresh samples from Qt+1 to St+1.;
If |St+1| > s, discard elements at random so that |St+1| = s.;

end
end

Lemma 13. The subroutine which accepts q with probability Q̂t+1
q /Qtq = e−η−γt ·

exp(−ηAD(xt, q)) is ε-differentially private for ε = max {η/n, η/γtn}.

13



Proof. Note that 0 < p := Q̂t+1
q /Qtq = e−η−γt · exp(−ηAD(xt, q)) ≤ e−γt < 1. In particular, the

probability is well-defined.

We compute the ratio between the probabilities that q is accepted under executions of the algorithm
on neighboring datasets D,D′ for fixed choices of the best responses x1, . . . , xt. This ratio is given
by

p

p′
=
Q̂t+1
q [D]

Qtq[D]
·
Qtq[D

′]

Q̂t+1
q [D′]

=
exp(−ηAD(xt, q))

exp(−ηAD′(xt, q))
≤ eη/n.

Similarly, we evaluate the ratio of the probabilities that q is not accepted under executions of the
algorithm on D and D′: Since p′ ≤ e−γt and p/p′ ≥ e−η/n, we have

1− p
1− p′

= 1 +
1

1/p′ − 1

(
1− p

p′

)
≤ 1 +

1− e−η/n

eγt − 1
≤ 1 +

η/n

γt
≤ eη/γtn,

as required.

Bad samples also incur privacy loss from sampling from the distribution Qt. Just as in [11], we use
the fact that this step can be viewed as an instantiation of the exponential mechanism with score
function

∑t−1
i=1(q(D)− q(xi)) to obtain:

Lemma 14. Sampling from Qt is ε-differentially private for ε = 2η(t− 1)/n.

Proof of Privacy for Theorem 12.

Proof. Each round t incurs privacy loss from s invocations of a (η/γtn)-differentially private algo-
rithm (rejection sampling, Lemma 13), and s̃t invocations of a (2η(t − 1)/n)-differentially private
algorithm (Lemma 14). Since ε-differential privacy implies 1

2ε
2-CDP [2], we have (by composition)

that round t is ρt-CDP for

ρt =
η2

2γ2
t n

2
s+

2η2(t− 1)2

n2
s̃t =

η2s

n2

(
1

2γ2
t

+ 2(t− 1)2 · (2γt + 4η)

)
≤ η2s

n2

(
4t4/3 + 8ηt2

)
.

Composing over rounds t = 1 · · ·T yields ρ = O
(

log(|X |T/β)·log2+1/3(|Q|)
n2α4+2/3 + log(|X |T/β)·log3(|Q|)

n2α5

)
,

as required.

Accuracy

The accuracy analysis follows that of of DualQuery, together with the following claims show-
ing that the rejection sampling process simulates the collection of independent samples in the
DualQuery algorithm.
Lemma 15. Let P andQ be probability distributions overQ, and letM ≥ maxq∈Q Pq/Qq . Sample
an element of Q as follows. Sample q according to Q, and accept it with probability Pq/(M ·Qq).
If q is not accepted, sample q according to P . Then the resulting element is distributed according to
P .

Proof. The total probability of sampling q according to this procedure is given by

Qq ·
Pq

M ·Qq
+ Pq ·

∑
q′∈Q

Qq′ ·
(

1− Pq′

M ·Qq′

)
= Pq ·

 1

M
+
∑
q′∈Q

(
Qq′ −

Pq′

M

)
= Pq ·

(
1

M
+

(
1− 1

M

))
= Pq.

Lemma 16. For any given round t, the probability that more than s̃t samples are rejected is at most
(e/4)s̃t ≤ β

3T .
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Proof. The probability that any given sample is rejected is 1 − Q̂t+1
q /Qtq = 1 − e−η−γt ·

exp(−ηAD(xt, q)) ≤ 1− e−2η−γt ≤ 2η + γt = s̃t
2s . (In particular, s̃t is at least twice the expected

number of rejected samples.) The set of s samples is rejected independently. By a multiplicative
Chernoff bound, the probability that more than s̃t samples are rejected is at most (e/4)s̃t . Note that

s̃t ≥ 4ηs = 48
α log

(
3|X |T
β

)
. Thus (e/4)s̃t ≤

(
β

3|X |T

)18/α

≤ β
3T .

Together Lemmas 15 and 16 show that, with high probability, at each round t, the set St is distributed
as s independent samples from Qt. Given this, the rest of the proof follows that of the original
DualQuery.

Proof of Accuracy for Theorem 12.

Proof. For each round t, by Hoeffding’s bound and Lemma 16 and a union bound over X , with
probability at least 1− β

T , we have

∀x ∈ X

∣∣∣∣∣∣1s
∑
q∈St

q(x)− E
q←Qt

[q(x)]

∣∣∣∣∣∣ ≤ α

4
.

By a union bound over the T rounds we have that the above holds for all t ∈ [T ] with probability at
least 1− β.

By assumption, in each round t, our oracle returns xt that is an α/4-approximate best response to
the uniform distribution over St. Thus, with high probability, the sequence x1, · · · , xT are α/2-
approximate best responses to the distributions Q1, · · · , Qt. Since the distributions are generated
by multiplicative weights, we have that this is an α-approximate equilibrium. Hence the uniform
distribution over x1, · · · , xT is an α-accurate synthetic database for D.
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