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Abstract

When collaboratively training Machine Learning (ML) models with Secure Mul-
tiparty Computation (SMC), the price paid for keeping the data of the parties
private, is an increase in computational cost and runtime. A careful choice of ML
techniques, algorithmic and implementation optimizations are a necessity to enable
practical secure ML over distributed datasets. Such optimizations can be tailored
to the kind of data and ML problem at hand. To the best of our knowledge, we
present the fastest existing SMC implementation for training logistic regression
models on high dimensional data. For our largest dataset, we train a model that
requires over 7 billion secure multiplications; the training completes in about 2
hours in a local area network.

1 Introduction

Machine learning (ML) has many applications in the biomedical domain, such as diagnosis and
personalized medicine. Biomedical datasets are typically characterized by high dimensionality, i.e. a
high number of features such as lab test results or gene expression values, and low sample size, i.e. a
small number of training examples corresponding to e.g. patients or tissue samples. Adding to these
challenges, valuable training data is often split between parties (data owners) who cannot openly
share the data because of privacy regulations and concerns.

We tackle the problem of training a binary classifier on high dimensional gene expression data held
by different data owners, while keeping the training data private. This work is directly inspired by
the iDASH2019 competitionﬂ which invited participants to design Secure Multiparty Computation
(SMC) [4]] solutions for collaborative training of ML models by two or more data owners. One of
the competition datasets consists of 470 training examples (records) with 17,814 numeric features,
while the other consists of 225 training examples with 12,634 numeric features. An initial 5-fold
cross-validation analysis in the clear, i.e. without any encryption, indicated that in both cases logistic
regression (LR) models are capable of yielding the level of prediction accuracy expected in the
competition, prompting us to investigate SMC based protocols for secure LR training.

The iDASH2019 competition requirements imply the existence of multiple data owners who each
send their training example(s) in an encrypted or secret shared form to data processors (computing
nodes), as illustrated in Fig. 1} The honest-but-curious data processors are not to learn anything
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Figure 1: Overview of SMC based secure LR training. Each of n data owners secret shares their
own training data between two data processors. The data processors engage in computations and
communications to train a ML model, which is at the end revealed to the data owners.

about the data as they engage in computations and communications with each other. At the end, they
disclose the trained classifier — in our case, the coefficients of the LR model — to the data owners.

A variety of efforts have previously been made to train LR classifiers in a privacy preserving (PP) way.
They can be grouped into outsourced computation approaches and multiparty computation approaches.
In the outsourced setting, one party (the data owner) holds the data, while another party (the data
processor), such as a cloud service, is responsible for the model training. Outsourced computation
solutions usually rely on homomorphic encryption, with the data owner encrypting and sending
their data to the data processor who performs computations on the encrypted data without having
to decrypt it [2} 3} [8]. The multiparty computation setting that we consider differs from the above
because we assume that the data resides with multiple data owners. Existing multiparty computation
approaches to secure LR differ in the numerical optimization algorithms used for LR training and
in the cryptographic primitives leveraged [7, 910} [13]]. Out of these, the closest to our work is the
SecureML method [9]]. The main novelty points of the SecureML paper are a clipped ReLu activation
function (see Fig.[2[b)), a novel truncation protocol, and a combination of garbled circuits and secret
sharing based computations in order to obtain a good trade-off between communication, computation
and round complexities. The SecureML protocol is evaluated on a dataset with up to 5,000 features
[9]], while — to the best of our knowledge — the existing runtime evaluation of all other approaches for
SMC based LR training is limited to 400 features or less [[7, [13].

The main novelty points of our protocol for private LR training over a distributed dataset are: (i) a new
protocol for securely computing the activation function that needs no secure comparison protocols;
(i1) a novel way of bundling bit decomposition instantiations; and (iii) a very efficient implementation
using state-of-the-art cryptographic engineering techniques in the programming language Rust —
which turned out to be an excellent choice. To the best of our knowledge, ours is the very first
implementation of SMC in Rust. When run in a local area network (LAN), SecureML reports 4.5ms
for an activation evaluation. Our implementation can do 1024 activation evaluations in around 24ms.
In summary, we designed a concrete solution for fast secure training of a binary classifier over gene
expression data that meets the strict security requirements of the iDASH2019 competition. For our
largest dataset, we train a model that requires over 7 billion secure multiplications; the training
completes in about 2 hours in a LAN.

2 Method

In our secure LR training setting (cfr. Fig. , each data owner has a training example d = (x4, t4)
in which x4 = (z4.1,...,%4m) is an m-dimensional vector of real numbers, namely the values
of m input attributes for example d, and t; € {0,1} is the ground truth class label. The data
processors train a neuron to map the x,4’s to the corresponding ¢4’s. As illustrated in Fig. PJa),
the neuron applies an activation function to a weighted sum of the inputs, to arrive at the output



. . 1
activation

Xo

function o(z)
0 | %1 output
2 z
Q<X
£ : o) 4 9 1
X.
m O 0, z< —%
= . . . 1
0= f(Wo-Xo+ Wy X+ + W Xpm) g(z)zﬁp(2)= z+3, d<z<!
1, z23
z
(@) (b)

Figure 2: (a) Neuron; (b) Approximation of sigmoid activation function ¢ by clipped ReLu p

(1) ALGORITHM GRADIENTDESCENT(D, 1)
(2)  //Input: A set D with training examples (x4, t4); a learning rate n
(3)  // Output: Weights w; that minimize the sum of squared errors over the training data
4) for i < 0tom do
%) w; < 0
(6) until termination condition is met do
7 for i < 0tom do
@®) Aw; + 0
9) for each (xg4,tq) in D do
(10) 04 + p(wo - g0 + W1 - Tg,1 + ..+ Wi - Td,m)
(11) for i < 0 to m do
(12) Aw; + Aw; + n(td - od)zd,‘i,
(13) for i < 0tom do
(14) w; — w; + Aw;

Figure 3: Full gradient descent algorithm for training a neuron with activation function p

04 = f(wo-xa0+wi-xa1+ ...+ Wy - Tdm),in which x4 o has value 1 for all d’s. The sigmoid
activation function o (cfr. Fig. b)) that is traditionally used for LR, requires division and evaluation
of an exponential function, which are expensive operations to perform in secret sharing based SMC,
hence we approximate it with function p (cfr. Fig. 2[b)) as in [9]. To learn values for the weights
from the training examples, the data processors follow the gradient descent based algorithm in Fig. 3]

Operations are performed on additive shares in aring Z, (¢ = 2*). The data owners first convert each
feature value € R into a value Q(x) in Z4 corresponding to a fixed point approximation of x with
a fractional precision of a bits. We use a two’s complement representation for negative numbersﬂ

[2r— 29 |z|] ifz <0
Q) = {Lza -z ifz >0 M

After the conversion, each data owner secret shares every number in its training example between the
data processors (parties), henceforth called Alice and Bob. In general, a number z in Z is split in
secret shares by picking 24, 2p € Z, uniformly at random subject to the constraint that z = z4 + 2B
mod g, and then revealing z4 to Alice and zp to Bob. We denote this secret sharing by [z],, which
can be thought of as a shorthand for (24, zp). [5]] has a detailed description of our notation.

Once they have received secret sharings ([x4] 4, [¢],) of the training examples, the data processors
perform a secure version of the training algorithm from Fig. [3] During the execution, they maintain a
secret sharing [w], of the weight vector learned so far, which is initially populated with Os (lines 4-5).
The data processors know in advance the agreed on learning rate 7 and the fixed number of iterations
to perform during training (see line (6) in Fig.[3). We do not use early stopping because in that case
the number of iterations would depend on the values in the training data, hence leaking information.
The only operations in Fig. 3] that cannot be performed fully locally by the data processors, i.e. on
their own local shares, are the computation of the inner product w - x in line 10, followed by the
application of the activation function p in line 10, and the multiplication of ¢4 — 0q with 4 ; in line

*Note that the bit decomposition of Q(z) is a bit string of length X in which the most significant bit represents
the sign of x, and the lowest a bits represent the fractional component of x. The bits in between are used to store
the integer component of z, hence A should be chosen large enough to be able to represent the maximum value
produced during the LR protocol.



Table 1: Accuracy and training runtime for LR models

# features  # pos. samples  # neg. samples  5-fold CV acc runtime
BC-TCGA 17,814 422 48 99.56% 134.03 min
GSE2034 12,634 142 83 6591%  48.02 min

12. For efficient secure multiplication, we use a trusted initializer (TT) that pre-distributes correlated
randomness to the parties participating in the protocol (see Step (1) in Fig.[I)). This multiplication
triplets technique was originally proposed by Beaver [1]] and is regularly used to enable very efficient
solutions in the context of PPML (see e.g. 516,19} [11]]). The TI is not involved in any other part of the
execution and does not learn any data from the parties. Details about the corresponding multiplication
protocol 7pp, which we use in line 12, can be found in [3]]. It can be straightforwardly extended to a
protocol for efficient computation of the inner product of two vectors, as used in line 10.

Finally, for the secure evaluation of the p on line 10, we propose a new protocol 7, that evaluates
p directly over additive shares. At the beginning of this protocol, the parties have a secret sharing
[z]4: at the end of the protocol they have a secret sharing [p(z)],. Protocol 7, relies on the insight
that |z| > 0.5 if, and only if, at least one of the b integer bits, or the most significant bit of the a
fractional bits in the bit decomposition of z, is 1. A detailed description of 7, is given in Appendix
[Al As a further optimization, we exploit the fact that many evaluations of p need to be performed at
once per iteration in Fig. [3] namely one per training example. To execute this efficiently, we have
designed a novel protocol batch-mgecomp to combine multiple instances of the bit decomposition
protocol Tgecomyp from [5] (see Appendix . Bundling up several evaluations of p results in a highly
optimized protocol, particularly in the scenario of LANs. SecureML reports 4.5ms for an activation
evaluation over LAN. Our implementation completes 1024 evaluations in around 25ms.

3 Results

We implemented the protocols from Sectionin Rusﬂ and experimentally evaluated them on the BC-
TCGA and GSE2034 datasets of the iDASH2019 competition. We refer to the competition website
for more details about these datasets. We trained LR models on both datasets with a learning rate
1 = 0.001. The accuracy of the resulting models, evaluated with 5-fold cross-validation is presented
in Table[I] along with the average runtime (in min) for training those models. It is important to note
that these are the same accuracies that are obtained when training the neuron from Fig. [2a]in the clear,
i.e. there is no accuracy loss in the secure version.

We use(ﬂ integer precision b = 15, fractional precision @ = 12 and ring size A = 64. We ran the
experiments on AWS c¢5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. Each of the parties
ran on separate machines (connected with a Gigabit Ethernet network), which means that the results
in Table (1| cover communication time in addition to computation time. The results show that our
implementation allows to securely train models with state-of-the-art accuracy [12] on the respective
datasets within about 2 hours.

4 Conclusion

In this paper, we have described a novel protocol for implementing secure training of logistic
regression over distributed parties using Secure Multiparty Computation. While being inspired by
SecureML, our protocol and implementation present several novel points including: (i) a novel
protocol for computing the activation function that does not require secure comparisons; (ii) a novel
way to bundle many instances of secure bit decomposition and secure computations of the activation
function; (iii) the very first optimized implementation of SMC in the Rust programming language.
With our implementation, training a LR classifier over a highly dimensional dataset that requires over
7 billion secure multiplications, completes in about 2 hours. Our solution is particularly efficient for
LANs where we can perform 1024 secure computations of the activation function in about 24ms.
Evaluating our solution in a WAN or over the internet would be a next step of our work.

*https://bitbucket.org/mdecock/idash2019-rust/
>See Appendix for an explanation for these choices.
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Figure 4: Register map of fixed-point representation of numbers shared over Zyx.

A Protocol 7,

As depicted in Figure 4] we use a fixed-point representation to share numbers over Zyx: a bits
are allocated to represent the descending negative powers of 2 and b bits are allocated to represent
increasing non-negative powers of 2. We use a bit-decomposition protocol 7 gecomp from [S)] that
converts additive sharings over a ring Zo» into n shares over the ring Z3. The idea of the protocol 7,
that computes the activation function p on a value z is the following:

1.

Using [z]» and the bit-decomposition protocol we obtain a sharing [MSB],x corresponding
to the most significant bit of z.

. We obtain a secret sharing [z,.:]» corresponding to the absolute value of z by computing

[2ret]or < (1 — [MSB]aa) - [2]2x + [MSB]ax - (2% — [2]22)

. [2ret]2» is bit-decomposed using Tgecomp (#rer) and the resulting secret sharings are sepa-

rated into two relevant components:
(a) All bits greater than or equal to %: Zint = (Zret >> (@ — 1)) A (20F1 — 1)
(b) All bits less than 3, converted to additive shares: zfyqc = Trd_elcomp(zTCt A (2071 1))

The bitwise OR of z;,,; is logically equivalent to |z| > %. This determines whether p(z) is
in the constant or linear region. It can be computed efficiently as:

b+1
Te =" /\ Zint,i
=1

. The MSB and r. provide enough information to map z into the correct region of p(z) as

Zfrac contains the relative shift between 0 and 1 if p is in the linear region. It can be
computed as follows:

1 1
+MSB - (Tc - 2prac + 7 - 5) +MSB- (2* = (e 2frac + e 3)

| —

p(z) =

Algorithm 1: Evaluates a point on the curve of the activation function p over the ring Zsx.
Constraints: all values in Zqx are representations of fixed point approximations of real numbers s.t.
the lowest a bits represent the fractional component, the next b bits represent the integer component
and A > 2(a + b). Further, a negative value x is represented as 2* — |z|, where | - | is the absolute
value of an integer.

SecureActivation ([z]9x);

Input : [z]ox

Output :[p(2)]2x

Let [msb]ox < [z]2n >> A —1

Let [3]on + 1 << (a—1)

[e]on 4= (1 = [msb]ar) - [2]on + [msb]an - (2% — [2]20)

Let [dys1, ..., di]or < ([2]ar >>a —1) A (2°F! — 1) where d; € {0,1}
Let [L]or < [2]or A (2071 = 1)

Let [[CHQA — \/ [[di]]y\

i€{1,b+1}

Let [r]on ¢ [c]or - [3]2x + (1 = [c2r) - [L] 2
Let [r']or + (1 =2+ [msb]ar) - [r]ar + [2]2
return [r']x




B Protocol batch-7 ..o,

The protocol Tgecomp Was proposed in [5]. It takes in a secret-shared value [x]2» and outputs the bit
decomposition {[zx]2, [£a—1]2-.., [z1]2} works like the ripple carry adder arithmetic circuit based
on the insight that the difference between the sum of two additive shares and an "XOR-sharing"
of that sum is the carry vector. The fact that the carry bit of each bitwise sum must be present
for the computation of the next bit implies a communication cost that is linear with the bit length
. Obviously, this is an unacceptable cost to pay for every activation function. We propose batch-
Tdecomp aS @ Means to take advantage of cases where many values need to be decomposed at once, as
is the case in our LR protocol. It works by taking vertical slices of a collection of additive-shared
values and transposing them into new integers. In this way, the carry of all 0-th order bits is computed,
followed by all 1-st order bit carries, and so on up to the (A — 1)-th carry. In this scheme, every
group of )\ ring elements requires only two sets of Beaver triples to compute the carries for the ¢-th
bit. So until the optimal transmission buffer size is reached (based on our testing, 1024 bytes), the
communication cost of performing multiple (4 times the transmission buffer size) bit decompositions
is identical to only performing one. Additionally, the local computations are minimal and contribute
virtually nothing to the running time.

C Truncation Errors

In our solution, we use the two-party offline truncation protocol for fixed point representations
of real numbers proposed in [9]. This protocol always incurs an error of at most a bit flip in the
least-significant bit. However, with probability 20+1=X where a is the number of fractional bits, the
resulting value is completely random. When this truncation protocol is performed on increasingly
large data sets (in our case we run over 7 billion secure multiplications), the probability of an
erroneous truncation becomes a real issue - an issue not significant in previous implementations.
There are two phases in which truncation is performed: (1) when computing the dot product of the
current weights vector with a training example, and (2) when the weights are updated at the end of
a round. If a truncation error occurs during (1), the resulting erroneous value will be pushed into
a reasonable range by the activation function and incur only a minor error for that round. If the
error occurs during (2), an element of the weights vector will be updated to a completely random
ring element and recovery from this error will be impossible. To mitigate this in experiments, we
make use of 10-12 bits of fractional precision with a ring size of 64 bits, making the probability of
failure 2% <p< 2% The number of truncations that need to be performed was also reduced in
our implementation by waiting to perform truncation until it is absolutely required. For instance,
instead of truncating each result of multiplication between an attribute and its corresponding weight,
a single truncation can be performed at the end of the entire dot product. Additional error is incurred
on the accuracy by the fixed point representation itself. Through cross-validation with an in the clear
implementation, we determined that 10 bits of fractional precision provide enough accuracy to make
the output accuracy indistinguishable.
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