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Abstract

Discovering samples or features which leak information about correlated private
data is a key challenge in designing context-aware privacy mechanisms. In this
paper, we propose a framework to discover information-leaking samples and fea-
tures based on an information-theoretic quantity known as the information density.
We provide an estimator, TIDE, to approximate the thresholded information den-
sity with a provable sample complexity. Our framework is then validated on two
real-world datasets providing evidence that the TIDE can potentially be used as
a building block to design privacy mechanisms targeting only those information-
leaking samples and features.

1 Introduction
Different samples and features within a dataset may leak different levels of private information.
For example, not all Tweets equally reveal a user’s political preference, and not all pixels in face
images equally disclose emotion (see Section 3). A privacy mechanism should ideally target only
those samples and features that leak excessive amount of private information if disclosed. Given the
targeted set of private attributes, these types of mechanisms, known as context-aware mechanisms [1],
improve the utility by incorporating either complete (cf. information-theoretic privacy [2–6]) or
partial (cf. generative adversarial privacy [1, 7]) knowledge of the underlying data distribution.

A natural, yet mostly overlooked, first step in designing context-aware privacy mechanisms is to
discover information-leaking samples or features for a given set of private attributes. Besides the
utility improvement, discovering these features may help in improving interpretability as well. For
instance, in an attempt to hide emotion in a face image one may need to add stronger noise to mouth
and eyes pixels than to background pixels.

We propose a novel methodology to identify information-leaking samples and features via an
information-theoretic quantity known as the information density1 [9, 10]. This quantity appears
in several privacy definitions including information-theoretic privacy [3–5] as well as differential
privacy (under the name of privacy loss variable) [11–16]. We consider a datasetD = {(sn,xn)}Nn=1,
drawn i.i.d. from PS,X , where sn ∈ S = Rm and xn ∈ X = Rk are the nth private attribute (e.g.
emotion) and data sample (e.g. a face image), respectively. Moreover, we use xjn to denote the jth

feature (i.e., coordinate) of xn (j ∈ {1, . . . , k}). The information density of the nth sample is then
given by

i(sn;xn) , log
PS,X(sn;xn)

PS(sn)PX(xn)
= log

PS|X(sn|xn)

PS(sn)
. (1)

The feature information density is analogously defined as i(sn;xjn) for any j ∈ {1, . . . , k}. Intuitively,
|i(sn;xn)| evaluates the change of belief about sn upon observing xn. This intuition leads us to

1This quantity is called the pointwise mutual information in natural language processing literature [8].
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view information density as a score for identifying information-leaking samples and features. Since
we might not have access to the underlying distribution PS,X in practice, we need to estimate the
information density. As the expected value of information density is equal to the mutual information,
such estimation problem is closely connected to the estimation of mutual information which is
known to be challenging [17–19] unless an adequate parametric model is assumed [20]. The main
difficulty lies in the unboundedness of the information density, which leads to high complexity for
precise estimation. Nevertheless, we do not need to precisely estimate information density in our
framework; instead, we only need to know which samples or features have |i(sn;xn)| higher than a
given threshold. Therefore, it is sufficient for us to consider the thresholded information density, a
much easier estimation problem. Inspired by [21,22], we develop the thresholded information density
estimator (TIDE), based on the variational representations of f -divergences [21, 23]. By trading off
the estimation of those unbounded information density, we are able to implement the TIDE on two
real-world datasets to discover information-leaking features by neural networks.

In short, our main contributions include (i) designing an estimator of thresholded information density
with provable guarantee (see Section 2), and (ii) experiments (see Section 3) that provide evidence
that TIDE can potentially serve as a building block to design privacy mechanisms which target only
those information-leaking samples and features. It is worth mentioning that context-aware privacy
mechanisms, being inherently prior-dependent, have several limitations [1]. In Section 4, we address
some of these limitations along with potential future directions.

Related Work The problem of balancing the competing objectives of providing meaningful in-
formation and inference, on one hand, and obfuscating sensitive information, on the other hand,
has been recently investigated in [1, 24, 25]. Following the information-theoretic trend, these works
exploit average measures (in particular mutual information) to obfuscate data to maintain privacy
(of sensitive attributes) on the average. Our approach can be viewed as the sample-based version of
these works in that we deal with each individual data sample separately and not on an average basis.
Moreover, the approach of first discovering the information-leaking samples and then perturb those
risky samples resembles, in essence, the instance-based additive mechanism of Nissim et al. [26] in
the differential privacy setting.

As it involves estimating information density from samples, our approach is connected to the density
ratio estimation problems [22, 23, 27], which are fundamental in various applications of machine
learning and statistics, e.g. outlier detection [28], transfer learning [29], and generative adversarial
nets [30]. A naïve way to estimate the density ratio is to use the plug-in estimator, that is, to estimate
the empirical joint distribution P̂S,X and marginals P̂S and P̂X and declare log

P̂S,X(s,x)

P̂S(s)P̂X(x)
as the

estimated information density. However, this approach is known to perform poorly [20] unless
adequate parametric models (e.g. linear [27], kernel [31], or exponential family [22] models) are
assumed. The two closest approaches to thresholded information density estimation are (i) [23],
which proposed using the variational representation of f -divergences to convert information density
estimation into an optimization problem over finite-complexity set of functions and (ii) [22], which
estimated the trimmed density ratio of variables from exponential family distributions. We adopt the
idea of thresholding when solving the variational representation of f -divergences (see Section 2).

2 Estimating the Thresholded Information Density

We propose next a consistent and scalable estimator for the thresholded information density, the
TIDE, and derive its sample complexity. The estimator is central to discovering information-leaking
samples and features.

Thresholded Information Density Estimator (TIDE). The TIDE we proposed here is based on
the variational representation of KL divergence2, the so-called Donsker-Varadhan (DV) representation,
that states

D(PS,X‖PSPX) = sup
g:S×X→R

EPS,X [g(S,X)]− logEPSPX [eg(S,X)]. (2)

Recall that D(PS,X‖PSPX) is equal to the mutual information I(S;X) between S and X , which
is in fact the expected information density EPS,X [i(S,X)]. It can be shown that the maximizer g∗

2Other f-divergence measures could also be used by their dual representation, see Appendix A.
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of the optimization problem (2) is given by the information density, i.e., g∗(s, x) = i(s;x). Hence,
the problem of estimating information density is equivalent to solving the optimization problem (2)
given access to samples drawn from PS,X .

Since the search space in (2) is unconstrained, directly solving the optimization by computing the
empirical expectations would fail in general. One practical approach is to restrict the search space to
a family G(Θ) of continuous and bounded functions gθ parameterized by θ in a compact domain Θ ⊂
Rd, where d is the number of parameters. The new constrained optimization problem corresponds to
approximating the information density by a bounded function, thus the name thresholded information
density. The thresholded information density estimator (TIDE) is then given by

ĝn , argmax
gθ∈G(Θ)

EPSn,Xn [gθ(S,X)]− logEPSnPXn [egθ(S,X)], (3)

where PSn,Xn and PSnPXn denote the empirical distributions of PS,X and PSPX , respectively.

2.1 Consistency and Sample Complexity of the TIDE
The TIDE obtained by solving (3) belongs to a broader class of extremum estimators [32] of the
form â = argmaxa∈A Λn(a), where Λn(a) is an objective function and A is a parameter space. The
consistency of extremum estimators is guaranteed by the Newey-McFadden Lemma (see Appendix B),
which in turn implies the consistency of the TIDE (see [33, Proposition 3]). In this paper, we further
turn our attention to deriving the sample complexity of the TIDE. We make further assumption that
functions in G(Θ) are Lipschitz, and use the concentration inequality3 [34] of the information density
to prove the following theorem (see proof in Appendix C). To avoid technical complications, we
assume that EPS,X [g(S,X)] and EPSPX [eg(S,X)] are finite for all functions g in G(Θ).

Proposition 1 (Sample Complexity). Assume that functions in G(Θ) are bounded byM and Lipschitz
with respect to θ, and Θ ⊂ Rd is compact. Then we have |ĝn(s, x)− g∗(s, x)|≤ η with probability
at least 1− e−M , for all s ∈ S and x ∈ X , where n = O(M

2d(log d−log η+M)
η2 ).

Observe that thresholding the information density is crucial for the bound in the previous theorem to
hold: if M →∞ (i.e., estimating the true information density), the sample complexity of the TIDE
grows to infinity and the result is vacuous.

2.2 Implementation
For practitioners’ purpose, we use the set of functions representable by a neural network with output
clipped to [−M,M ] to approximate the set of continuous and bounded functions in G. By sampling
(sn,xn) from PS,X and (sn,xn) from PS × PX for the first and second expectations in (3), we
can back-propagate on the neural network, and after training, the TIDE outputs the estimate of the
thresholded information density of samples |i(sn;xn)|≤M and of features |i(sn;xjn)|≤M .

3 Experiments

We validate the implementation of the TIDE in Section 2.2 with a focus on discovering information-
leaking features on two real-world datasets, (i) detecting emotion-leaking pixels in GENKI-4K
dataset [35], and (ii) discovering politically-charged terms in the Tweets of online media [36].
Throughout the experiments, we set M = 2.00. For experiments on identifying information-leaking
samples, see [33].

GENKI-4K Smiling Dataset. This dataset contains 2400 images for training and 600 for testing,
where each image (xn) is a 64× 64 pixels (each pixel is a feature xjn) face that is smiling (S = 1) or
not (S = 0), We train the TIDE and achieve I(S;X) = 0.594 bits. We select 10 faces from the test
set for illustration in Figure 1 row (a). In order to estimate i(sn;xjn) for each pixels xjn, we create
an artificial image in which we keep the values of the original image within a patch of size 3 × 3
pixels, say xrn,x

r+1
n , . . . ,xr+8

n , and set the rest pixels to be zero. Running r from 1 to k − 8, we
scan the entire image with the patch, and feed each artificial image into the TIDE to estimate the
thresholded information density of the patch, i.e. i(sn;xrn,x

r+1
n , . . . ,xr+8

n ) for all r. Then i(sn;xjn)

3In other words, Pr
{
i(S;xn) > t

}
≤ e−t, ∀xn.

3



Figure 1: The TIDE on the GENKI-4K smiling dataset. Row (a): original images, row (b): information-leaking
pixels (features) (red parts indicate higher thresholded information density), row (c): applying standard Gaussian
noise only on pixels with high thresholded information density clearly hides the private information while
preserving utility (e.g. gender).

is set to be the average of i(sn;xrn,x
r+1
n , . . . ,xr+8

n ) for all patches which contain xjn. We report
i(sn;xjn) for each pixel of an image in Figure 1 row (b) which indicate pixel with high privacy risk.
Note that the TIDE can not only reveal the pixels informative to smiling (mostly pixels that compose
the mouths), but also captures the contour of faces. We add Gaussian noise to those pixels with
thresholded information density higher than 0.9, and show the resulting images in Figure 1 row
(c), which hides the private attribute while preserving other useful information in the image that is
irrelevant of smiling. For example, we can still identify the gender of the people in Figure 1 row (c).

Figure 2: Left: Outputs from TIDE for terms in
Tweets. GOP: Grand Old Party (i.e. the Repub-
lican Party), NRA: National Rifle Association, EO:
Entrepreneurs’ Organization, Euromaidan Pr.: Euro-
maidan Press.

Political Preferences of Tweets. We collect
75946 Tweets from more than 20 online publish-
ers (e.g. CNN, Bloomberg, New York Times),
and determine their private attribute S as the polit-
ical preference of being right-wing (sn = 0) and
left-wing (sn = 1) according to [36], where the
numbers of samples with each political bias are
equivalent. We pre-process the Tweets to keep
only meaningful terms (i.e. pieces of words) and
use bags-of-words model [37] representation to
tokenize all the pieces of words for each Tweet ac-
cording to term frequency, ending up with 24657
terms (i.e. features xjn, j ∈ {1, · · · , 24657). We
train the TIDE using the tokenized Tweets as xn
and achieve I(S;X) = 0.645 bits. In Figure 2,
we show the estimate of thresholded informa-
tion density of each terms i(sn;xjn), and some
politically-charged terms that would reveal the
political bias.

4 Final Remark
We discuss the limitations and future directions in the following.

Limitations. In order to estimate the information density, we make two key assumptions: (i) we
know a priori private attributes that we wish to hide (e.g., political preference), and (ii) we have
access to a reference dataset from which we can train machine learning models (though this is difficult
to avoid as discussed in [38]). Although these assumptions are restrictive in practice, they allow us to
develop a systematic machinery to discover information-leaking samples and features in an entirely
data-driven and automated manner.

Future Directions. We ideally seek to design privacy-assuring mechanisms that go beyond the
indiscriminate addition of noise or uniform randomization on a whole dataset based on the TIDE. In
Figure 1 row (c), we employ a primitive mechanism that applies standard Gaussian noise merely on
information-leaking pixels; however, how to design "optimal" perturbations or randomization with
provable privacy guarantees remains open and could be a topic worthy of further study.
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Appendices
A Estimating Information Density using f -Divergences

Other f -divergence measures could also be used to estimate the information density by leveraging their
dual representation [23]. Given a convex function f with f(1) = 0, the f -divergence Df (P‖Q) =
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EQf
(
P
Q

)
can be expressed as

Df (P‖Q) = sup
g:X→R

EP [g(X)]− EQ[f∗(g(X))], (A.1)

where f∗(t) , supx∈R{xt− f(t)} is the Fenchel convex conjugate of f . It can be shown that the
optimizer is the subdifferential ∂f(PQ ) which, in turn, is a non-decreasing function of P

Q . Thus,
Df (P‖Q) is also a candidate loss function in density ratio estimation problems.

B Newey-McFadden Lemma

Lemma 1 ( [39, Theorem 2.1]). Given the extremum estimator â = argmaxa∈A Λn(a), if (i) A is
compact; (ii) there exists a limiting function Λ(a) such that Λn(a) converges to Λ(a) in probability
over A; (iii) Λ(a) is continuous and has unique maximum at a = a∗, then â is a consistent estimator
of a∗.

C Proof of Proposition 1

By Hoeffding’s inequality [40], for all functions g bounded by M , i.e. |g|≤M , we have

Pr{|EPSn,Xn [g(S,X)]− EPS,X [g(S,X)]|> η

4
} ≤ 2 exp

(
−

2n2(η2 )2

(2M)2n

)
= 2 exp

(
− nη2

32M2

)
.(C.1)

Moreover, since gθ is parameterized by θ, we utilize the union bound [41, Lemma 2.2] to extend
(C.1) for the parameters θ. For this purpose, recall that Θ ⊂ Rd is compact and bounded by C, by
the exterior covering number of bounded subspace [41, pp. 337], we know the r-covering number
N(r,Θ) of Θ is upper bounded by

N(r,Θ) ≤

(
2C
√
d

r

)d
. (C.2)

By (C.1) and (C.2), we have

Pr{∃θl ∈ Θ s.t. sup
gθ

|EPSn,Xn [gθl(S,X)]− EPS,X [gθl(S,X)]|> η

4
}

≤ 2N(r,Θ) exp

(
− nη2

32M2

)
. (C.3)

where θl is in the r-cover of Θ. Since G(Θ) is compact, we can replace the supremum by maximum.
To make 2N(r,Θ) exp

(
− nη2

32M2

)
< δ, we have

n >
32M2(logN(r,Θ) + log 2

δ )

η2
. (C.4)

Now, let r = η
8L , and recall that gθ is L-Lipschitz continuous with respect to θ, then for any θ ∈ Θ,

we have with probability one

|gθ − gθl |≤ L|θ − θl|≤ Lr = L× η

8L
=
η

8
. (C.5)

By triangular inequality, for any θ ∈ Θ, whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , we have with
probability at least 1− δ,

max
gθ
|EPSn,Xn [gθ(S,X)]− EPS,X [gθ(S,X)]|

≤ max
gθ
|EPSn,Xn [gθ(S,X)]− EPSn,Xn [gθl(S,X)]|

+ max
gθ
|EPSn,Xn [gθl(S,X)]− EPS,X [gθl(S,X)]|

+ max
gθ
|EPS,X [gθ(S,X)]− EPS,X [gθl(S,X)]|

≤ η

8
+
η

4
+
η

8
=
η

2
(C.6)
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Therefore, we have

Pr{max
gθ
|EPSn,Xn [gθ(S,X)]− EPS,X [gθ(S,X)]|≤ η

2
} ≥ 1− δ. (C.7)

Similarly, starting from

Pr{∃θl ∈ Θ s.t. |logEPSnPXn [egθl (S,X)]− logEPSPX [egθl (S,X)]|≥ η

4
}

≤ 2N(r,Θ) exp

(
− nη2

32M2

)
, (C.8)

we also conclude that for any θ ∈ Θ, whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , we have with
probability at least 1− δ,

Pr{max
gθ
|logEPSn,Xn [Egθ(S,X)]− logEPS,X [egθ(S,X)]|≤ η

2
} ≥ 1− δ. (C.9)

Summarizing (C.7) and (C.9), whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , for any θ ∈ Θ, we have

Pr{|max Λn(ĝn(s, x))−max Λ(g(s, x))|≤ η}
≥ Pr{max

gθ
|EPSn,Xn [gθ(S,X)]− EPS,X [gθ(S,X)]|

+ max
gθ
|logEPSn,Xn [Egθ(S,X)]− logEPS,X [egθ(S,X)]|≤ η}

≥ 1− δ. (C.10)

The thresholded information density estimator, in this sense, gives a thresholded (clipped) information
density, i.e. |ĝn(s, x) − g∗(s, x)|≤ η if g∗(s, x) ≤ M and |ĝn(s, x) − g∗(s, x)|≥ η otherwise. By
the concentration of the information density [34], we also know the probability that the information
density is clipped is upper bounded, i.e.

Pr{|g∗(s, x)|≥M} ≤ e−M . (C.11)

Therefore, whenever n >
32M2(d log 16LC

√
d

η +log 2
δ )

η2 , for all s ∈ S and x ∈ X , we have

Pr{|ĝn(s, x)− g∗(s, x)|≤ η} ≥ 1− δ ≤ 1− e−M , (C.12)

by choosing δ ≥ e−M , and the desire result follows.
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