
Cryptε: Crypto-Assisted Differential Privacy on
Untrusted Servers

Amrita Roy Chowdhury
University of Wisconsin-Madison

amrita@cs.wisc.edu

Chenghong Wang
Duke University
cw374@duke.edu

Xi He
University of Waterloo
xihe@uwaterloo.ca

Ashwin Machanavajjhala
Duke University

ashwin@cs.duke.edu

Somesh Jha
University of Wisconsin-Madison

jha@cs.wisc.edu

Abstract

In this work, we propose, Cryptε, a system and programming framework that (1)
achieves the accuracy guarantees and algorithmic expressibility of the central model
(2) without any trusted data collector like in the local model. Cryptε achieves the
“best of both worlds” by employing two non-colluding untrusted servers that run
DP programs on encrypted data from the data owners. Although straightforward
implementations of DP programs using secure computation tools can achieve the
above goal theoretically, in practice they are beset with many challenges such
as poor performance and tricky security proofs. To this end, Cryptε allows data
analysts to author logical DP programs that are automatically translated to secure
protocols that work on encrypted data. These protocols ensure that the untrusted
servers learn nothing more than the noisy outputs, thereby guaranteeing ε-DP for all
Cryptε programs. Cryptε supports a rich class of DP programs that can be expressed
via a small set of transformation and measurement operators followed by arbitrary
post-processing. Further, we propose performance optimizations leveraging the
fact that the output is noisy. We demonstrate Cryptε’s feasibility for practical DP
analysis with extensive empirical evaluations on real datasets.

1 Introduction

Differential privacy (DP) is a rigorous privacy definition that has become the gold standard for data
privacy. It is typically implemented in one of two models – centralized differential privacy (CDP)
and local differential privacy (LDP). In CDP, data from individuals are collected and stored in the
clear in a trusted centralized data curator which then executes DP programs on the sensitive data and
releases outputs to an untrustworthy data analyst. In LDP, there is no trusted data curator. Rather,
each individual perturbs his/her own data using a (local) DP algorithm. The data analyst uses these
noisy data to infer aggregate statistics of the datasets. In practice, CDP’s assumption of a trusted
server is ill-suited for many applications as it constitutes a single point of failure for data breaches,
and saddles the trusted curator with legal and ethical obligations to uphold data privacy. Hence recent
commercial deployments of DP [14, 18] have preferred LDP over CDP. However, LDP’s attractive
privacy properties comes at a cost. Under the CDP model, the expected additive error for a aggregate
count over a dataset of size n is at most Θ(1/ε) to achieve ε-DP. In contrast, under the LDP model,
at least Ω(

√
n/ε) additive expected error must be incurred by any ε-DP program [6, 9, 11], owing

to the randomness of each data owner. The LDP model in fact imposes additional penalties on the
algorithmic expressibility; the power of LDP is equivalent to that of the statistical query model [22]
and there exists an exponential separation between the accuracy and sample complexity of LDP and
CDP algorithms [21].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this paper, we strive to bridge the gap between LDP and CDP. We propose, Cryptε, a system and
a programming framework for executing DP programs that:

• never stores or computes on sensitive data in the clear
• achieves the accuracy guarantees and algorithmic expressibility of the CDP model

Cryptε employs a pair of untrusted but non-colluding servers – Analytics Server (AS) and Cryp-
tographic Service Provider (CSP). The AS executes DP programs (like the data curator in CDP)
but on encrypted data records. The CSP initializes and manages the cryptographic primitives,
and collaborates with the AS to generate the program outputs. Under the assumption that the AS
and the CSP are semi-honest and do not collude (a common assumption in cryptographic systems
[28, 27, 16, 23, 26, 17, 15]), Cryptε ensures ε-DP guarantee for its programs via two cryptographic
primitives – linear homomorphic encryption (LHE) and garbled circuits.

Cryptε provides a data analyst with a programming framework to author logical DP programs just
like in CDP. Like in prior work [25, 13, 29], access to the sensitive data is restricted via a set of
predefined transformations operators (inspired by relational algebra) and DP measurement operators
(Laplace mechanism and Noisy-Max [12]). Thus, any program that can be expressed as a composition
of the above operators automatically satisfies ε-DP (in CDP model) giving the analyst a proof of
privacy for free. Cryptε programs support constructs like looping, conditionals, and can arbitrarily
post-process outputs of measurement operators.
The main contributions of this work are:

• New Approach: We present the design and implementation of Cryptε, a novel system and
programming framework for executing DP programs over encrypted data on two non-colluding
untrusted servers.
• Algorithm Expressibility: Cryptε supports a rich class of state-of -the-art DP programs expressed

in terms of a small set of transformation and measurement operators. Thus, Cryptε achieves the
accuracy guarantees of the CDP model without the need for a trusted curator.
• Ease Of Use: Cryptε lets data analysts express the DP program logic using high level operators.

Cryptε automatically translates this to the underlying implementation specific secure protocols that
work on encrypted data and provides a DP guarantee (in the CDP model) for free. Thus the data
analyst is relieved of all concerns regarding implementation of secure computation protocols.
• Performance Optimizations: We propose optimizations that speed up computation on encrypted

data by at least an order of magnitude. A novel contribution of this work is a DP indexing
optimization that leverages the fact that intermediate statistics about the data can be revealed as
long as DP is satisfied.
• Practical for Real World Usage: For the same tasks, Cryptε programs achieve accuracy compara-

ble to CDP and at least 2 orders of magnitude more accurate than that of LDP. Cryptε runs within
5 min for a large class of programs on a dataset with 32,561 rows and 4 attributes.
• Generalized Multiplication Using LHE: Our implementation uses an efficient way for performing
n-way multiplications using LHE which maybe of independent interest.

The full version of the paper is available at the link [1].

2 Cryptε Overview

2.1 System Architecture

Figure 1 shows Cryptε’s system architecture. Cryptε has two servers: Analytics server (AS) and
Cryptographic Service Provider (CSP). At the very outset, the CSP records the total privacy budget,
εB , (provided by the data owners) and generates the key pair (pk (public key), sk (secret key)) for
the encryption scheme. The data owners, DOi, i ∈ [m] (m = number of data owners), encrypt their
data records, Di, in the appropriate format with the public key (pk) and send the encrypted records,
D̃i, to the AS which aggregates them into a single encrypted database D̃. Next, the AS inputs logical
programs from the data analysts and translates them to Cryptε’s implementation specific secure
protocols that work on D̃. A Cryptε program typically consists of a sequence of transformation
operators followed by a measurement operator. The AS can execute most of the transformations on
its own. However, each measurement operator requires an interaction with the CSP for (a) decrypting

2

Figure 1: Cryptε System: AS executes Cryptε programs; CSP manages the cryptographic primitives.

the answer, and (b) checking that the total privacy budget, εB , is not exceeded. In this way, the AS
and the CSP compute the output of a Cryptε program with the data owners being offline.

2.2 Cryptε Design Principles

Minimal Trust Assumptions: In order to accommodate the use of cryptographic primitives, we
assume a computationally bounded adversary in Cryptε. However, a generic m+ 1 party SMC would
be computationally expensive. This necessitates a third party entity that can capture the requisite
secure computation functionality in (at least) a 2-party protocol instead. For this two-server model,
we assume semi-honest behaviour and non-collusion. This is a very common assumption in the
two-server model [28, 27, 16, 23, 26, 17, 15].

Programming Framework: Conceptually, the aforementioned goal of achieving the best of both
worlds can be obtained by implementing the required DP program using off-the-self secure multi-
party computation (SMC) tools like [2, 5, 4, 3]. However, when it comes to real world usage, Cryptε
outperforms such approaches due to the following reasons.

First, without the support of a programming framework like that of Cryptε, every DP program must
be implemented from scratch. This requires the data analyst to be well versed in both DP and SMC
techniques; he/she must know how to correctly manage keys, implement SMC protocols, estimate
sensitivity of transformations and track privacy budget across programs. In contrast, Cryptε allows
data analysts to write the DP program using a high-level and expressive programming framework.
Cryptε abstracts out all the low-level implementation details like the choice of input data format,
translation of queries to that format, choice of SMC primitives and privacy budget monitoring from
the analyst thereby reducing his/her burden of complex decision making. Thus every Cryptε program
is automatically translated to protocols corresponding to the underlying implementation.

Second, SMC protocols can be prohibitively costly in practice unless they are carefully tuned to the
application. Cryptε supports optimized implementations for a small set of operators, which results in
efficiency for all Cryptε programs.

Third, a DP program can be typically divided into segments that (i) transform the private data, (ii)
perform noisy measurements, and (iii) post-process the noisy measurements without touching the
private data. A naive implementation may implement all the steps using SMC protocols even though
post-processing can be performed in the clear. Given a DP program written in a general purpose
programming language (like Python), automatically figuring out what can be done in the clear can be
subtle. In Cryptε programs, however, transformation, measurement are clearly delineated, as the data
can be accessed only through a prespecified set of operators. Thus, SMC protocols are only used for
transformation and measurement operations, which improves performance.

Last, the security (privacy) proofs for just stand-alone cryptographic and DP mechanisms can be
notoriously tricky [7, 24]. Combining the two thus exacerbates the technical complexity, making the
design vulnerable to faulty proofs [19].

Data Owners are Offline: Recall, Cryptε’s goal is to mimic the CDP model with untrusted servers.
Hence, it is designed so that the data owners are offline after submitting their encrypted records to the
AS. If the data owners were online, the efficiency of some programs could be improved as some of
the computation can be offloaded to the data owners.

3

Low burden on CSP: Cryptε views the AS as an extension of the analyst; the AS has a vested
interest in obtaining the result of the programs. Thus we require the AS to perform the majority
of the work for any Cryptε program execution; interactions with the CSP should be minimal and
only related to data decryption. Keeping this in mind, we design the AS to perform most of the data
transformations by itself. Specifically for every Cryptε program, the AS processes the whole database
and transforms it into concise representations (like an encrypted scalar or a short vector) which is then
decrypted by the CSP. An example real world setting can be when Google and Symantec assumes
the role of the AS and the CSP respectively.

Separation of logical programming framework and underlying physical implementation: The
programming framework is independent from the underlying implementation. This allows certain
flexibility in the choice for the implementation. For example, our prototype Cryptε uses per attribute
one-hot-encoding as the input data format. However, any other encoding scheme like multi-attribute
one-hot-encoding, range based encoding can be used instead. As discussed above, due to our design
choice of having low burden on the CSP, we implement Cryptε using LHE and garbled circuits. It
is straightforward to replace LHE with the optimized HE scheme in [8] or garbled circuits with the
mixed protocol ABY framework [10].

Yet another alternative implementation for Cryptε could be where the private database is equally
shared between the two servers and they engage in a secret share based SMC protocol for executing
the DP programs. This would require both the servers to do almost equal amount of work for each
program. Such an implementation would be justified only if both the servers are equally invested
in learning the DP statistics and is ill-suited for our context. A real world analogy for this can be if
Google and Baidu decide to compute some statistics on their combined user bases.

2.3 Cryptε Optimization: Differentially Private Index Optimization
In this section we provide a brief overview of the DP index optimization which we consider to
be a novel contribution of this paper. Additionally, we propose three other crypto-engineering
optimizations for Cryptε which are detailed in the full paper [1].
The DP index optimization is motivated by the fact that several programs first filter (selection
operator) out a large number of rows in the dataset. Since the database is encrypted, the naive filter
implementation keeps all the rows (even if they do not satisfy the condition) as the AS has no way
of telling whether the filter condition is satisfied. However, if there were an index on the filtering
attribute, then the program can be executed only on the correct subset of row; but an exact index
would violate DP. Hence, we propose a DP index to bound the information leakage while improving
the performance. At a high level, the DP index on any ordinal attribute A is constructed as follows:
(a) securely sort [20] the input encrypted database D̃ on A and (b) learn a mapping F from the
domain of A to [1, |D̃|] such that most of the rows with index less than F(v), v ∈ domain(A) have a
value less than v for A. Cryptε learns this mapping under DP (details in [1]). When a Cryptε program
starts with a filter φ = A ∈ [vs, ve], Cryptε derives the indices for a noisy subset of rows from F that
satisfies the condition φ and executes the rest of the program on this subset.

3 Experimental Evaluation Highlights

We present the highlights of the experimental evaluation of Cryptε in this section.

• Cryptε can achieve up to 2 orders of smaller error than the corresponding LDP implementation on
a data of significant size (∼ 30, 00).
• The optimizations in Cryptε can improve the performance of unoptimized Cryptε by up to 5667×.
• A large class of Cryptε programs execute within 5 mins for a dataset of size ∼ 30, 000 and it scales

linearly with the dataset size. The AS performs majority of the work for most programs.

4 Conclusions

In this paper we have proposed a system and programming framework, Cryptε, for differential privacy
that achieves the constant accuracy guarantee and algorithmic expressibility of CDP without any
trusted server. This is achieved via two non-colluding servers with the assistance of cryptographic
primitives, specifically LHE and garbled circuits.

4

References
[1] Full version of the paper. https://drive.google.com/file/d/

1sYposoEdI4XpNzJqAQIg67dXqNXN6Loj/view?usp=sharing.

[2] https://github.com/emp-toolkit.

[3] https://github.com/encryptogroup/aby.

[4] https://github.com/kuleuven-cosic/scale-mamba.

[5] http://www.multipartycomputation.com/mpc-software.

[6] A. Beimel, K. Nissim, and E. Omri. Distributed private data analysis: Simultaneously solving
how and what. In Proceedings of the 28th Annual Conference on Cryptology: Advances in
Cryptology, CRYPTO 2008, pages 451–468, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006, pages 409–426, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[8] M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan. Optimized homomorphic
encryption solution for secure genome-wide association studies. IACR Cryptology ePrint
Archive, 2019:223, 2019.

[9] T.-H. H. Chan, E. Shi, and D. Song. Optimal lower bound for differentially private multi-party
aggregation. In Proceedings of the 20th Annual European Conference on Algorithms, ESA’12,
pages 277–288, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] D. Demmler, T. Schneider, and M. Zohner. Aby - a framework for efficient mixed-protocol
secure two-party computation. In NDSS, 2015.

[11] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates. In
2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 429–438, Oct
2013.

[12] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9:211–407, Aug. 2014.

[13] H. Ebadi and D. Sands. Featherweight pinq, 2015.

[14] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-preserving
ordinal response. In CCS, 2014.

[15] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans. Secure
linear regression on vertically partitioned datasets. IACR Cryptology ePrint Archive, 2016:892,
2016.

[16] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans. Privacy-
preserving distributed linear regression on high-dimensional data. PoPETs, 2017:345–364,
2017.

[17] I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon. Privacy-preserving ridge regression
with only linearly-homomorphic encryption. In B. Preneel and F. Vercauteren, editors, Applied
Cryptography and Network Security, pages 243–261, Cham, 2018. Springer International
Publishing.

[18] A. Greenberg. Apple’s ‘differential privacy’ is about collecting your data—but not your data.
Wired, Jun 13 2016.

[19] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava. Composing differential privacy and
secure computation: A case study on scaling private record linkage. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pages
1389–1406, New York, NY, USA, 2017. ACM.

5

https://drive.google.com/file/d/1sYposoEdI4XpNzJqAQIg67dXqNXN6Loj/view?usp=sharing
https://drive.google.com/file/d/1sYposoEdI4XpNzJqAQIg67dXqNXN6Loj/view?usp=sharing

[20] K. V. Jónsson, G. Kreitz, and M. Uddin. Secure multi-party sorting and applications. Cryptology
ePrint Archive, Report 2011/122, 2011. https://eprint.iacr.org/2011/122.

[21] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we
learn privately? In 2008 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 531–540, Oct 2008.

[22] M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–1006,
Nov. 1998.

[23] S. Kim, J. Kim, D. Koo, Y. Kim, H. Yoon, and J. Shin. Efficient privacy-preserving matrix
factorization via fully homomorphic encryption: Extended abstract. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, ASIA CCS ’16, pages
617–628, New York, NY, USA, 2016. ACM.

[24] M. Lyu, D. Su, and N. Li. Understanding the sparse vector technique for differential privacy.
PVLDB, 10:637–648, 2017.

[25] F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data
analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’09, pages 19–30, New York, NY, USA, 2009. ACM.

[26] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38, May 2017.

[27] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh. Privacy-preserving
matrix factorization. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 801–812, New York, NY, USA, 2013. ACM.

[28] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-preserving
ridge regression on hundreds of millions of records. In 2013 IEEE Symposium on Security and
Privacy, pages 334–348, May 2013.

[29] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanavajjhala, and G. Miklau. EKTELO:
A framework for defining differentially-private computations. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pages 115–130, 2018.

6

https://eprint.iacr.org/2011/122

	Introduction
	Crypt Overview
	System Architecture
	Crypt Design Principles
	Crypt Optimization: Differentially Private Index Optimization

	Experimental Evaluation Highlights
	Conclusions

