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Abstract

Deep learning as a service paradigms are increasingly employed for image-based
applications spanning surveillance, healthcare, biometrics, and e-commerce. Typi-
cally, trained convolutional neural networks (CNNs) are hosted on cloud infrastruc-
ture, and applied for inference on input images. There is interest in approaches to
enhance data privacy and security in such settings. Fully homomorphic encryption
(FHE) can address this need as it caters to computations on encrypted data, but
poses intensive computational burden. Prior works have proposed approaches
to alleviate this burden for 32 × 32 images, but practical applications require at
least 10X higher resolution. Here, we present CareNets: Compact and Resource
Efficient CNN for homomorphic inference on encrypted high-resolution images.
Our approach is based on a novel compact packing scheme that packs CNN inputs,
weights and activations densely into HE ciphertexts; and integrates them into the
CNN computation flow. We implement CareNets using a GPU-accelerated FHE
library for CNN inference on encrypted retinal images of size 96 × 96 and 256 ×
256. Our results show that CareNets achieves over 32.78× speedup, 45× improve-
ment in memory efficiency, and 5851× reduction in transferred message size while
maintaining accuracy within 3% of the non-encrypted CNN baselines.

1 Introduction

Deep learning has enabled significant performance leaps for a variety of image-based applications
ranging from face recognition [18] and biometric identification [17] to surveillance image analysis,
medical image classification [7], and QR code identification [8] for economic transactions. Increas-
ingly, trained models are deployed in a Deep Learning as a Service paradigm and hosted on cloud
infrastructure [11]. Typically, a user would upload input images to the cloud, wherein a previously
trained model is evaluated on the input images. The prediction results are then returned to the user
in exchange for a service fee. Although the cloud offers low cost yet scalable deployment, it poses
important data privacy concerns, particularly for images with sensitive information. Hence, there is
interest in secure deep learning inference on the cloud for image-based use cases.

Three approaches exist to address this need: 1) secure multi-party computation (MPC), 2) differential
privacy (DP) and 3) fully homomorphic encryption (FHE). Each has its challenges. MPC is limited
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by communication complexity and bandwidth requirements across multiple parties [14, 13, 16].
DP adds noise to the data and may result in loss of prediction accuracy at inference time [1]. FHE
evaluates functions on encrypted data and hence requires enormous amount of computation. We here
consider FHE for deep learning inference and focus on improving efficiency without compromising
security.

FHE has been extensively applied for simple computations on images such as correlations and
histogram analysis [19]. Recent works have applied FHE for inference with convolutional neural
networks (CNNs) on image datasets such as MNIST [6, 4, 12, 2] and CIFAR-10 [10, 4, 2], and
demonstrated feasibility for higher complexity computations. However, these studies have been
limited to low resolution (32×32) images. In contrast, most of the image-based applications above
require at least 10X higher resolution (96 × 96 to 512 × 512) images [7].

One recent report explored FHE for CNN inference with 224×224 images [5], but requires 55 minutes
for each image, imposes over 1 TB data communication burden on the user, and imposes significant
RAM load on the cloud server. Practical scenarios might require latencies of a few minutes, MB-level
data communication for users, and GB-level memory efficiency for inference on cloud servers.

To address the above requirements, we propose CareNets, a homomorphic CNN architecture based
on a novel compact packing scheme that packs CNN inputs, weights, and activations densely into HE
ciphertexts. Moreover, CareNets is very flexible as it can be adapted to perform computations on
matrices and vectors with arbitrary sizes. We implement CareNets for CNN inference on encrypted
retinal images on top of a GPU-accelerated FHE library, and demonstrate substantial performance
gains while maintaining accuracy and security.

Our major contributions are as follows:

• We propose a new compact homomorphic CNN architecture that packs high-dimensional vectors
of CNN inputs, weights and activations densely into FHE-encrypted ciphertexts, and apply highly
parallel execution for homomorphic CNN operations.

• We design and develop FHE-friendly CNN models, and show their applicability for image classifi-
cation problems involving real-world high resolution retinal image datasets.

• We provide the first GPU implementation for homomorphic CNN on high resolution images, and
demonstrate significant improvements over several state-of-the-art baselines. Specifically, we
achieve best-in-class inference latency, reduce client communication overhead by 5851×, improve
memory efficiency by up to 45×, all while maintaining accuracy within 3% of the non-encrypted
CNN baselines.

2 CareNets

2.1 Packing Strategy

In FHE, packing is used to compact an array of plaintext messages into into a ciphertext, to reduce
complexity, parallelize homomorphic computations and accelerate performance. Prior works such as
CryptoNets used interleaved packing, which is a batch processing method to perform CNN inference
concurrently on as many images as the number of slots in each ciphertext. While interleaved packing
can provide high throughput on the inference service, it also suffers from high resource usage, since
it creates the same amount of ciphertexts even when predicting a single image. The problem becomes
more severe when dealing with high-resolution images and wider CNNs, due to the creation of a
large number of ciphertexts that can quickly exhaust system memory resources. Instead, CareNets
is built on a compact packing approach to pack all inputs and outputs from each CNN layer into
ciphertext slots. Specifically, compact packing packs pixels of a single image one by one into the same
ciphertext. CareNets does not restrict the number of ciphertexts used during the compact packing
process. When the slots in one ciphertext are fully used, it will continue with a new ciphertext.

In CareNets, the intermediate output in each layer is also converted into the compact packing format,
which is subsequently fed into the next layer for computation. Compared with interleaved packing,
the number of ciphertexts created in compact packing for the input image as well as the layer-wise
intermediate data is dramatically reduced, resulting in dramatically lower memory demand. Moreover,
we detail how the compact-packed data can be integrated into the CNN computations, and demonstrate
that the computational latency for an entire run of the CNN is also reduced, due to the minimized
number of ciphertexts and associated addition and multiplication operations.
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2.2 HCNN Computation
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Figure 1: (a) An extended representation of one convolution computation operation. The filter is
extended into the same dimension as the input tensor by padding zeros. (b) The extended filter tensor
and the input tensor are flattened into weight and input vectors respectively, where the convolution
(dot product) is done through element-wise multiplication followed by summing all the elements in
the resultant vector. (c) The weight and input vectors are mapped into ciphertexts through compact
packing. The convolution is evaluated through slot-wise multiplication between each pair of weight
ciphertext and input ciphertext, and then accumulating all the resultant ciphertexts through slot-wise
addition, and finally adding up all the slots inside this summed ciphertext. (d) The entire convolution
layer is evaluated by permuting all the filters and shifted locations of each filter, doing convolution
with the inputs, and arranging all the convolution results contiguously in the final output ciphertexts
to form the compact-packed outputs.

Figure 1 illustrates how CareNets computes a convolution layer. A key idea in the design is to pad the
filters into the same dimension as the input data, so every convolution step will always be computing
the dot product between the extended filter and input data. It operates directly on compact-packed
data, and does not require any sophisticated rearrangement of data in the ciphertexts. It also poses no
restriction on the size and dimension of the filters and input data.

Complexity Analysis. CareNets computations mainly focus on dot products between extended
filters and the layer-wise input. Suppose an extended filter and the layer input are split into k and l
ciphertexts respectively (note k is not necessarily equal to l as all-zero ciphertexts in the extended filter
will not be created). First, we compute slot-wise multiplication through k ciphertext multiplications.
Second, the k resultant ciphertexts from the first step are added together through k − 1 additions.
Third, we need to add together all the slots in the resultant ciphertext from the second step. Here, we
adopt the fast slot-summation algorithm [9] which requires log2n rotations and additions respectively
on the ciphertext, given n to be the total number of slots in one ciphertext2. This process will produce
a ciphertext with the sum result filled in each of the slots. Lastly, we need to arrange the dot product
result into the final output ciphertext. This is achieved by multiplying a mask with the resultant
ciphertext from step three, and add it into the final output ciphertext. The mask is actually a one-hot
vector containing all zeros expect a one at the target slot index. This step requires a multiplication
with plaintext and addition.

Parallel Processing. The architecture of CareNets is easily parallelized. In Figure 1(c), the multiple
pairs of weight-input multiplications can be processed in parallel. In Figure 1(d), each dot product
of one weight-matrix row with the input-data vector can be computed independently, thus all the
dot-product computations can also be processed in parallel.

3 Experiments and Evaluations

Data: As retinal images are relevant for both biometric and healthcare applications, we demonstrate
the proposed homomorphic evaluation packing strategy on two retinal image datasets. 1) Retinopathy
of Prematurity (ROP): We obtained 1000 posterior pole retinal RGB photographs from the Imaging

2For BFV scheme, slots are organized into two groups of n/2. We can operate on the two groups concurrently.
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and Informatics in ROP (i-ROP) study [3]. We preprocessed the images and converted to grayscale,
segmented the retinal vessels [3], and downsampled to 96 × 96. 2) Diabetic Retinopathy (DR): We
obtained 249 color retinal fundus images from the IDRiD challenge dataset collected at an eye clinic
located in India [15]. We resized the original RGB images to 256 × 256 and normalized them by the
maximum intensity value in each image. In both cases, images were clinically assessed for abnormal
features and denoted as healthy or diseased; and the task focuses on binary image classification.

Implementation: We implement a 5-layer FHE-compatible CNN model in CareNets. First, a
convolution layer with 25 filters of size 5 × 5 and stride 2 × 2. Second, a square activation layer
which applies square function on the output of the first layer. Third, another convolution layer with
50 filters of size 5 × 5 and stride 2 × 2. Fourth, another square activation layer. Fifth and finally,
a fully-connected layer, weighted sum that generates 2 outputs (corresponding to 0 or 1 for the
abnormality detection) from the entire outputs of the previous layer.

We use the same network architecture for both ROP data and DR data, except that DR data requires a
wider network due to higher dimensionality. The FHE-compatible CNN achieves good prediction
accuracy for these datasets, within 3% of the accuracy provided by a state-of-the-art Inception or
CIFAR-Net network on the non-encrypted data. Since the homomorphic CNN is evaluated in memory
sequentially one layer at a time, the dominant factor driving memory resource overhead is network
width not depth. Hence, the 5-layer network is representative enough to demonstrate the superiority
of CareNets in memory savings.

We implement CareNets on both multi-core CPU and GPU server platforms. The CPU server has
two Intel Xeon processors each with 26 cores at 2.10 GHz frequency, and has 187.5 GB memory.
The GPU server has a NVIDIA Tesla V100 GPU card, which has 16 GB GPU memory.

Table 1: Performance comparison of CareNets against traditional homomorphic CNN with interleaved
packing. Units of Latency, Memory and Message Size are Second, GB and MB, respectively. FHE
Scheme is BFV, and ring dimension n = 214. Security level λ = 80 bits.

Dataset Architecture Platform log2 q t Latency Memory Message size

ROP HCNN-Interleaved Packing CPU 450 4503599627763713 3946.4 135 16200
(96 × 96 × 1) CareNets CPU 660 4503599627763713 994.9 2.94 2.90

CareNets GPU 660 2251799814045697 120.4 3.5 2.90
DR HCNN-Interleaved Packing CPU 450 4503599627763713 Failed Failed 345600
(256 × 256 × 3) CareNets CPU 660 4503599627763713 6004.7 17.2 61.88

CareNets GPU 630 281474977595393 1667.1 15.2 59.06

Performance Evaluation: Table 1 provides performance comparisons of our method against the
traditional homomorphic CNN with interleaved packing. We were unable to run GPU experiments
for interleaved packing due to high memory requirements.

For the ROP dataset, CareNets enables a 32.78× improvement in runtime, 45.9× improvement
in memory, and 5586.2× reduction in message size. These results are reasonable since an ROP
image is 96 × 96 × 1 and requires a large number of ciphertexts (one per pixel) to run traditional
homomorphic CNN with interleaved packing. For the more challenging DR dataset with 256 × 256 ×
3 pixel images, CareNets enables an evaluation time of less than 28 minutes using 15.2 GB memory,
requiring less than 60 MB message size on GPU. In contrast, the memory resources (187.5 GB) on
our CPU server were insufficient to run the interleaved packing baseline. These results suggest that
CareNets offers larger gains (over interleaved packing baselines) with higher resolution images.

4 Conclusion

Many practical applications require the ability to securely compute on high resolution encrypted
images, in the absence of a decryption key. FHE provides security guarantees alongside the ability to
compute, but is bottlenecked by high computation overhead. We have described a novel resource
efficient FHE strategy that leverages a compact packing scheme to enable homomorhpic CNN
inference for high resolution images. Evaluations on both CPU and GPU platforms using two
retinal image datasets show that our approach enables significant improvements for memory-efficient
low-latency FHE inference without compromising accuracy.
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