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Abstract

In recent years, deep learning has achieved overwhelming success, spanning from
discriminative models to generative models. In particular, generative adversarial
networks (GANs) have facilitated a new level of performance in a myriad of areas,
ranging from media manipulation to sanitized dataset generation. Despite the
great success, the potential risks of privacy breach caused by GANs have not been
analyzed systematically. In this paper, we focus on membership inference attack
against GANs that reveals information about the training data used for victim
models. Specifically, we present the first taxonomy of membership inference
attacks, comprising not only existing attacks but also our novel ones. In addition,
we propose the first generic attack model that can be instantiated in a large range
of settings according to the adversary’s knowledge about the victim models. We
complement the systematic analysis of attack performance by a comprehensive
experimental study, that investigates the effectiveness of various attacks w.r.t.
model type and training configurations, over three diverse application scenarios
(i.e., images, medical data, and location data).

1 Introduction
Over the past few years, generative adversarial networks (GANs) [11, 24, 26, 2, 12, 17, 6] have
achieve breakthroughs in improving the realism of generated data and approximation towards training
data distribution. Many IT companies and research institutes publish the pre-trained GAN models or
provide users with platforms where users can apply the learned models. However, with the prevalence
of publicly accessible pre-trained models and online deep learning APIs, data privacy is challenged
by malicious users who intend to infer the original training data. The resulting privacy breach would
raise serious issues because training data always contains sensitive attributes (e.g., a patient’s disease
history). One such attack is membership inference [10, 3, 27, 13, 25] which aims to identify if a
query data record was used to train a deep learning model.

There are two main motivations for conducting research in membership inference attack. The first
motivation is to validate and quantify the privacy vulnerability of a deep learning model. The second
motivation is to establish wrongdoing, where, e.g., regulators can be clued from membership inference
to propose the suspicion that a model was trained on personal data without an adequate legal basis.

Membership inference against discriminative deep learning models has been largely explored [3,
27, 1, 15, 20, 28, 7, 21], while inference against generative models is still an open question. This
is more challenging from the adversary side because the victim model does not directly provide
confidence values about the overfitting of data records. Recently, Hayes et al. [13] present a first
approach targeting GANs, which proposes to retrain a local copy of the victim GAN in a black-box
setting and to check the discriminator’s confidence for membership inference in a white-box setting.
Their intuition is that the overfitting of a victim GAN is either incorporated in its discriminator or



can be mimicked from a local copy of the discriminator. Hilprecht et al. [14] extend membership
inference attack to both GANs and VAE via Monte Carlo integration [22]. Their intuition is that an
overfitted generator tends to output data samples closer to the training data than to unseen data.

However, neither of them provides a complete, systematic, and practical analysis of membership
inference attacks against GANs. For example, Hayes et al. [13] does not consider the realistic
situation where the discriminator is not accessible but only the generator is deployed for query.
Hilprecht et al. [14] investigate only on small-scale image datasets and does not involve white-box
attack against GANs. That motivates our contributions along this direction towards a more systematic
analysis:

Taxonomy of membership inference attacks against GANs. We propose a pioneering study to
categorize attack settings against GANs. Given decreasing order of the amount of knowledge about
victim GAN accessible to the adversary, the settings are benchmarked as (1) accessible discriminator,
(2) white-box generator, (3) partial black-box generator, and (4) full black-box generator. In particular,
two of the settings, the partial black-box and white-box settings, are newly identified for attack model
design. We then establish the first taxonomy for the existing and our proposed attacks.

The first generic attack model across settings and its novel instantiated variants. We propose the
first generic attack model applicable to all the settings. The instantiated attack variants in the partial
black-box and white-box settings are also the first attempts. Their consistent effectiveness bridges
the assumption gap and performance gap between the existing full black-box attacks in [13, 14] and
discriminator-accessible attack in [13] through a complete performance spectrum.

2 Taxonomy of membership inference attack against GANs

Latent Gen- Dis-
code erator criminator

[13] full black-box × � ×
[14] full black-box × � ×
Our full black-box × � ×
Our partial black-box X � ×
Our white-box X � ×
[13] accessible discriminator × × X

Table 1: Taxonomy of attack settings against
GANs over the previous work and ours. (×: with-
out access; X: with access; �: black-box; �:
white-box). The settings are more and more knowl-
edgeable to attackers from top to bottom.

Specifically to the attack against GANs, we dis-
tinguish the settings based on the following cri-
teria: (1) whether the discriminator is accessible
or not, (2) whether the generator is white-box
or black-box, and (3) whether the latent code
of a generated sample is accessible or not. We
categorize the existing and the proposed attacks
in Table 1.

Accessible discriminator. This is the most
knowledgeable setting to attackers and it con-
verts the attack against a GAN to the attack
against a classical discriminative model, no mat-
ter whether the discriminator is white-box or
black-box. Existing attack methods against discriminator models can be applied to this setting. For
example, Shokri et al. [27] infer membership by checking the confidence value of the discriminator.
This setting is also considered in [13], corresponding to the last row in Table 1. In practice, however,
the discriminator of a well-trained GAN is usually discarded without being deployed to APIs, and
thus not accessible to attackers. We, therefore, devote less effort to investigating the discriminator and
mainly focus on the following practical settings where the attackers only have access to the generator.

White-box generator. This is the most knowledgeable setting to attackers when the discriminator
of a GAN is no longer accessible. Attackers have access to the parameters of the generator. This is
a realistic open-source scenario where users publish their well-trained generator without releasing
the underlying training data. This scenario is also commonly studied in the differential privacy
community [9]. However, this is a novel setting for membership inference attack against GANs,
which is not explored in [13] or [14]. It corresponds to the second last row in Table 1.

Partial black-box generator (known input-output pair). This is a less knowledgeable setting to
attackers where they have no access to the parameters of the generator but have access to each latent
code of generated samples. This is also a realistic scenario where attackers submit their latent code as
input and collect corresponding generated samples from the generator. This is another novel setting
and not considered in [13] or [14]. It corresponds to the third last row in Table 1.

Full black-box generator (known output only). This is the least knowledgeable setting to attack-
ers where they are unable to provide input but just blindly query samples from the well-trained
black-box generator. This corresponds to the practical scenario of closed-source GAN-based APIs.
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Hayes et al. [13] investigate attacks in this setting by retraining a local copy of the API. Hil-
precht et al. [14] sample data from the generator and count the number of generated samples that are
inside an ε-ball of the query, based on an elaborate design of distance metric. Our idea is similar in
spirit to Hilprecht et al. [14] but we score each query by the reconstruction error directly, which does
not introduce additional hyperparameter. In short, we design a low-skill attack method with a simpler
implementation that achieves comparable or better performance. Our attack and theirs correspond to
the first three rows in Table 1.

3 Membership inference attack against GANs
Generic attack model. We formulate the membership inference attack as a binary classification task
where we threshold the reconstruction error between a query sample x and its reconstructed copy
R(x|Gv) from the well-trained victim generator Gv . Our intuition is that, given access to a generator,
we should reconstruct samples better if they belong to the GAN training set. The attacker predicts
the query sample x to be in the training set if Lcal

(
x,R(x|Gv)

)
< τ , where Lcal(·, ·) is a calibrated

distance metric between two samples and τ is a pre-defined threshold.

The attacker’s goal is then to designR such that it activates the most accurate possible performance
of Gv to approximate a query sample. In the following sections, we instantiate variants of R for
different attack settings.

Full black-box attack. We start with the least knowledgeable setting where an attacker only has
access to a black-box generator Gv . The attacker is allowed no other operation but blindly collecting
k samples from Gv, denoted as {Gv(·)i}ki=1. Gv(·) indicates that the attacker has no access or
control over latent code input. We then define the reconstruction of x as the nearest neighbor from
{Gv(·)i}ki=1. Mathematically,R(x|Gv) = arg minx̂∈{Gv(·)i}ki=1

L(x, x̂).

Partial black-box attack. In the partial black-box setting where attackers have access to the latent
code input z of a query sample x, we propose to establish attack exploiting z. Concretely, the
attacker performs an optimization w.r.t. z in order to accurately reconstruct the query samples x.
Mathematically,R(x|Gv) = Gv(z∗), where z∗ = arg minz L

(
x,Gv(z)

)
.

Without knowing the parameters of Gv , the optimization is not differentiable. As only the evaluation of
function (forward-pass through the generator) is allowed by the access of {z,Gv(z)} pair, we propose
to approximate the optimum can be solved via the Powell’s Conjugate Direction Method [23]. For
the choice of initialization, we explore three different heuristics in our experiments, including mean
(z0 = µ), random (z0 ∼ N (µ,Σ)), and nearest neighbour (z0 = argminz∈{zi}ki=1

‖Gv(z)− x‖22). We
find that the mean and nearest neighbor initialization perform well in practice. Therefore, we apply
them both in parallel, and choose the one with smaller reconstruction error for the attack.

White-box attack. In the white-box setting, we have the same reconstruction formulation as in the
partial black-box setting. But the reconstruction quality can be further boosted due to the access
to the parameters of Gv. This is because the optimization becomes differentiable with gradient
backpropagation w.r.t. z, which can be more accurately solved by the L-BFGS [18] optimizer.

Distance metric. Our baseline distance metric L(·, ·) consists of three terms: the element-wise
(pixel-wise) difference term L2 targets low-frequency components, the deep image feature term Llpips
(i.e., the Learned Perceptual Image Patch Similarity (LPIPS) metric [29]) targets realism details, and
the regularization term penalizes latent code far from the prior distribution. Mathematically,

L(x,Gv(z)) = λ1L2(x,Gv(z)) + λ2Llpips(x,Gv(z)) + λ3Lreg(z)

where L2(x,Gv(z)) = ‖x − Gv(z)‖22 and Lreg(z) =
(
‖z‖22 − dim(z)

)2
. λ1, λ2 and λ3 are used to

enable/disable and balance the order of magnitude of each loss term. For non-image data, λ2 = 0
because LPIPS is no longer applicable. For full black-box attack, λ3 = 0 because z is not the variable
to optimize. For the other cases, λ1 = 1.0, λ2 = 0.2, and λ3 = 0.001.

Attack calibration. We noticed that the reconstruction error is query-dependent, i.e., some query
samples are more difficult to reconstruct due to their intrinsically more complicated representations. In
this case, the reconstruction error is dominated by the representations rather than by the membership
clues. Therefore, we propose to mitigate the query dependency by first training a reference GAN
Gr with another disjoint dataset, and then calibrating our base reconstruction error according to
the reference reconstruction error. Formally, Lcal(x,Gv(z)) = L(x,Gv(z)) − L(x,Gr(z)). The
optimization on the well-trained Gr is the same as on Gv .
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Figure 1: Comparisons of attacks on various datasets, GANs, and w.r.t. GAN training set size.

4 Experiments
Datasets. We investigate on three modalities of datasets covering images (CelebA [19]), medical
records (MIMIC-III [16]), and location check-ins (Instagram New-York [4]), which are all considered
with a high risk of privacy breach.

Victim GAN models. We choose PGGAN[17], WGANGP [12], DCGAN [24], MEDGAN [8], and
VAEGAN [5] into the victim model set, considering their pleasing performance on generating images
and/or other data representations.

Attack evaluation. The proposed membership inference attack is formulated as a binary classifi-
cation given a threshold τ . Through varying τ , we measure the area under the receiver operating
characteristic curve (AUCROC) to evaluate the attack performance. With a value range of [0, 1],
higher value indicates better classification (attack) performance.

Comparison to baseline attacks. We compare our calibrated attack to two recent membership
inference attack baselines: Hayes et al. [13] (denoted as LOGAN) and Hilprecht et al. [14] (denoted
as MC, standing for their proposed Monte Carlo sampling method). LOGAN includes a full black-box
attack model and a discriminator-accessible attack model against GANs. The latter is regarded as
the most knowledgeable but unrealistic setting because the discriminator in GAN is usually not
accessible in practice. MC only includes a full black-box attack model against GANs. Note that, to
the best of our knowledge, there does not exist another attack against GANs in the partial black-box
or white-box settings.

Figure 1 shows comparisons, considering several datasets, victim GAN models, and GAN training
set sizes, and across different settings. Our findings are as follows. A more complete analysis is in
the supplementary material.

In black-box setting, our low-skill attack consistently outperforms MC and outperforms LOGAN on
the non-image datasets. It also achieves comparable performance to LOGAN on CelebA but with a
much simpler implementation.

Our white-box and partial black-box attacks consistently outperform the other full black-box attacks,
which indicates that the release of the generator or even just the input to the generator can lead to
severe risk of privacy breach. With a complete spectrum of performance across settings, they bridge
the performance gap between LOGAN black-box attack and LOGAN discriminator-accessible attack.

LOGAN with access to the discriminator is the most effective attack, except when against VAEGAN.
The effectiveness can be explained by the fact that the discriminator is explicitly trained to maximize
the margin between training set (membership samples) and generated set (a subset of non-membership
samples), which eventually yields very accurate confidence scores for membership inference. As a
consequence, it shows that releasing the discriminator results in exceptionally high risk of privacy
breach. However, the discriminator score is not very effective against VAEGAN because its training
relies more on sample-wise supervision than on the adversarial loss.
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Appendix

A more elaborated version of this work can be found in https://arxiv.org/abs/1909.03935.
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