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Abstract

Differential privacy allows quantifying privacy loss from computations using sensi-
tive personal data. This loss grows with the number of accesses to the data, making
it hard to open the use of such data while respecting privacy. Instead of accessing
the data multiple times, we propose a method of fitting a probabilistic model on the
data using privacy preserving modelling techniques. From this probabilistic model
we sample a new synthetic dataset that may be subjected to unlimited amount of fu-
ture analysis, without affecting the privacy guarantees. We demonstrate empirically
that similar statistical discoveries can be made from the synthetic as the original
data. We expect the method to have broad use in sharing anonymized versions of
key data sets for research.

1 Introduction

Releasing datasets would be beneficial for the research community. However in general this is not
possible, due to the sensitive nature of information contained in for instance medical and many other
datasets. Recent advances in privacy-preserving machine learning have opened a possibility for an
alternative way towards opening the use of data: to learn from the sensitive dataset without violating
the anonymity of the individuals in the dataset.

Differential privacy (DP) [9] gives a statistical measure of privacy and anonymity. It provides strict
controls on the level to which an individual can be identified from the result of an algorithm operating
on personal data.

DP is widely used, but usually only to answer a specific question rather than releasing the data. While
we nowadays have powerful privacy-preserving tools for variety of machine learning methods, for
example the widely popular differentially private SGD [1], there is no simple way to bound the privacy
loss of answering arbitrary queries under DP. Another obstacle on the way towards widespread use is
that the data will be queried multiple times, the privacy risk will accumulate.

Releasing data under privacy guarantees would enable unlimited further operations on the dataset.
Recently, many privacy-preserving synthetic data release techniques based on deep learning have
been proposed [3, 17, 2, 4, 16, 19]. However, using Bayesian approach for generating data has not
been widely studied. In the past there have been some suggestions for privacy-preserving data release
methods for specific probabilistic models [6, 18].



In this paper we formulate the general principle of Bayesian DP data sharing and demonstrate how
to successfully apply it in two different model families. With empirical experiments we show that
very similar discoveries can be made from the synthetic data as we would from the original data.

2 Differentially private data sharing

We recall some basic concepts of differential privacy.
Definition 1 (Differential privacy). A randomized algorithm A : XN → I satisfies (ε, δ) differential
privacy, if for all adjacent datasets x,x′ ∈ XN and for all measurable I ⊂ I it holds that

Pr(A(x) ∈ I) ≤ eε Pr(A(x′) ∈ I) + δ. (1)

DP has many desirable properties such as composability of privacy quarantees, which allows quan-
tifying privacy parameters of multiple applications of DP algorithms. In the most basic form, the
privacy cost of the compositional query will be (

∑
i εi,

∑
i δi) [8], where (εi, δi) is a cost of the ith

query. Another important property of DP is invariance to post-processing [10]. This means that the
privacy guarantees of a DP results cannot be degraded by further manipulations of the result. Thus
we can use results of DP algorithms to answer future queries under the same privacy guarantees.

To formulate our framework of Bayesian DP data sharing, lets consider a dataset X and a probabilistic
modelM(X,Z) with latent variables Z. Our aim is to release a new synthetic dataset X̃ by learning
a data-generating model based on the original data. We will choose posterior predictive distribution
p(X̃ |X) as our generative model

p(X̃ |X) =

∫
Supp(Z)

p(X̃ |Z)p(Z |X)dZ. (2)

We sample from posterior predictive distribution, by first drawing Z̃ from the posterior distribution
p(Z |X) and then draw new data sample x̃ fromM conditioned on Z̃.

As we access the data only through the posterior distributions of the latent variables, it suffices to learn
these distributions under DP. Sampling from these posteriors can be considered as post-processing,
and thus no further effects on the privacy. Recently proposed privacy preserving Bayesian inference
methods [12, 15, 13, 11] aim to provide a solution for DP posterior inference.

The data sharing method is flexible and we can use any probabilistic model, that can be trained under
differential privacy, as the generator. In this paper, we study two different model families, Bayesian
networks and mixture models as the probabilistic model.

3 Case studies

3.1 Making statistical discoveries from the synthetic data

To test whether the same discoveries can be done from the synthetic as from the original data set, we
generated a synthetic data set based on an epidemiological set [5], using a general-purpose generative
model family (mixture model). The original data comprised of 208 148 females and 226 372 males.

The data have previously been used to study the effect of diabetes medication to alcohol related
deaths (ARD) using a Poisson regression model [14]. We fit a similar Poisson regression model to the
synthetic data and compared. For males, the results is that we can make the same statistical discovery
from the synthetic data : the diabetics have a higher mortality rate than the non-diabetics (Figure 1a).
Even with a reasonable level of privacy (ε = 2.0), it is very likely that we make the correct statistical
discovery from the synthetic data.

Since DP guarantees indistinguishability among individuals in the dataset, differentially private
algorithms are bound to lose some of the rare characteristics of the data. To assess this, we split the
regression coefficients, both male and female, into four equal sized bins of corresponding prevalence
and computed the mean absolute error between original and synthetic coefficients within these bins.
Figure 1b shows that the regression coefficients with higher prevalence are more accurately discovered
from the synthetic data. By prevalence, we refer to the number of individuals with follow-up ending
at an incidence.
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(a) ARD study. The correct statistical discoveries can be
made with high probability from the synthetic data. Bars
show the percentage of correct discoveries in 100 runs and
the different types of errors as a function of the privacy
level epsilon.
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(b) ARD study. Accuracy of synthetic regres-
sion coefficients improves as the number of rel-
evant examples grows. Mean absolute error be-
tween original and synthetic coefficients of co-
efficients within a prevalence bin. Prevalence
denotes the min and max number of relevant ex-
amples within a bin. Average result over 100
independent runs of the algorithm. Error bars :
standard error of mean.
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(a) ARD study. Mixture models preserve regression
coefficients better than the Bayes network. Average
over 100 runs. Error bars : standard error of mean.
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(b) Adult study. Both data sharing methods beat the
tailored mechanism in the high privacy region as the
number of anticipated queries grows. Average of 10
runs. Errorbars : standard error of mean.

3.2 Choice of probabilistic model

We test the of effect of probabilistic model by comparing results obtained from synthetic data of two
different probabilistic models : mixture model and private Bayes networks [18]. We evaluate the
performance of both models with two datasets : the epidemiological data discussed in Section 3.1
and the publicly available Adult dataset [7].

In the ARD study discussed in Section 3.1, the mixture models perform better than the Bayesian
network approach. Figure 2a shows the accuracy of both probabilistic models in terms of mean
absolute error between regression coefficients obtained from original and synthetic data.

We also compared the two probabilistic models in a classification task using the Adult dataset. After
learning the generative model, we used the synthetic data obtained from the generative model to train
a logistic regression classifier, to predict whether the individuals annual income exceeds $50 000.
We used a separate test set to test the performance of the method. Figure 2b illustrates that in this
example, the Bayes network outperforms the mixture model in terms of classification accuracy in the
strict privacy region.
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3.3 Performance against tailored mechanism

We compared the synthetic data release method in Adult example against a private logistic regression
classifier in a case where the data holder would split the privacy budget uniformly among for T queries.
Figure 2b shows that as the privacy budget increases, the tailored mechanism outperforms data release
mechanism with both Bayes network and mixture model. However, in the strict privacy region,
data-sharing method with both probabilistic models performs better than the tailored mechanism if
data holder would prepare for 20 queries.

4 Conclusions

We have presented a privacy-preserving data sharing mechanism that is applicable for arbitrary
datasets. Our data sharing method allows unlimited number of arbitrary tasks to be performed on the
synthetic data with no further privacy considerations. This is especially beneficial for tasks for which
there is no existing privacy preserving counterpart. The method works better with large datasets. This
is because of the nature of DP, it is easier to mask the contribution of one element of the dataset when
the data size is large.

Choosing the correct probabilistic model could possibly have a huge impact on the performance of
the method. For example with the epidemiological study dataset, the follow-up for each individual
ended either on date of death or on the end of study. This implies that the follow-up date, start date of
the follow-up and the occurrence of death have a dependency structure, thus it makes sense to include
this kind of structure directly to the model rather than waste the expressiveness of the probabilistic
model to learn it. Also as we saw in the Adult example, the Bayesian networks performed better than
the mixture model in the high privacy region. With relatively small dataset such as Adult, one should
use probabilistic model such as Bayesian networks to describe it.
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