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Abstract

We consider the problem of learning Markov Random Fields, particularly the
special case of the Ising model, under the constraint of differential privacy. This
includes both structure learning, where we try to estimate the underlying graph
structure of the model, as well as the harder goal of parameter learning, in which
we additionally estimate the parameter on each clique. We provide algorithms
and lower bounds for both problems under a variety of privacy models. While the
non-private sample complexity bounds for these two problems are both logarithmic
in the dimension, we show that this is not the case under differential privacy. In
particular, we investigate the sample complexity bounds for both problems under
the constraints of pure, approximate, and concentrated differential privacy. We show
that only structure learning under approximate differential privacy has logarithmic
sample complexity in the dimension, while a change in either the learning goal or
the privacy notion would necessitate a polynomial dependence. This suggests that
if we are operating on very high-dimensional data, the aforementioned setting is
the only one which is tractable.

1 Introduction

Graphical models are a common structure used to model high-dimensional data, which find a myriad
of applications in diverse research disciplines, including probability theory, Markov Chain Monte
Carlo, computer vision, theoretical computer science, social network analysis, game theory, and
computational biology [LPW09, Cha05, Fel04, DMR11, GG86, Ell93, MS10]. While problems
involving general distributions over d variables often run into the curse of dimensionality (i.e., an
exponential sample complexity in d), Markov Random Fields (MRFs) are a particular family of
undirected graphical models which are parameterized by the “order” t of their interactions. Restricting
the order of interactions allows us to capture most distributions which may naturally arise, and also
avoids this severe dependence on the dimension (i.e., we often pay an exponential dependence on
t instead of d). In this work, we focus on the fundamental case of pairwise graphical models
(corresponding to t = 2), and binary t-wise MRFs (i.e., with alphabet size 2). Note that, as a special
case, this includes the Ising model [Isi25]. More formally, we study the following objects.
Definition 1. The p-variable pairwise graphical model is a distribution D(W,Θ) on [k]p that
satisfies

Pr
Z∼D(W,Θ)

(Z = z) ∝ exp

 ∑
1≤i≤j≤p

Wi,j(zi, zj) +
∑
i∈[p]

θi(zi)

,
whereW = {Wi,j ∈ Rk×k : i 6= j ∈ [p]} is a set of symmetric weight matrices, and Θ = {θi ∈ Rk :
i ∈ [p]} is a set of mean-field vectors. The dependency graph of D(W,Θ) is an undirected graph
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G = (V,E), with vertices V = [p] and edges E = {(i, j) : Wi,j 6= 0}. The width of D(W,Θ) is
defined as

λ(W,Θ) = max
i∈[p],a∈[k]

∑
j∈[p]

max
b∈[k]
|Wi,j(a, b)|+ |θi(a)|

.
Define η(W,Θ) = min(i,j)∈E maxa,b |Wi,j(a, b)|.

We need the following definition of multilinear polynomial and its partial derivative in order to define
binary t-wise MRFs.
Definition 2. A multilinear polynomial is defined as h : Rp → R such that h(x) =

∑
I h̄(I)

∏
i∈I xi

where h̄(I) denotes the coefficient of the monomial
∏
i∈I xi with respect to the variables (xi : i ∈ I).

Let ∂ih(x) =
∑
J:i 6∈J h̄(J ∪ {i})

∏
j∈J xj denote the partial derivative of h with respect to xi.

Now we can define binary t-wise MRFs. We use the same characterization of MRFs as [KM17].
Definition 3. For a graph G = (V,E) on p vertices, let Ct(G) denote all cliques of size at most t in
G. A binary t-wise Markov random field on G is a distribution D on {−1, 1}p which satisfies

Pr
Z∼D

(Z = z) ∝ exp

 ∑
I∈Ct(G)

ϕI(z)

,
and each ϕI : Rp → R is a multilinear polynomial that depends only on the variables in I . We call
G the dependency graph of the MRF and ϕ(x) =

∑
I∈Ct(G) ϕI(x) the factorization polynomial of

the MRF. The width of D is defined as λ = maxi ‖∂ih‖1, where ‖h‖1 =
∑
I

∣∣h̄(I)
∣∣.

Given the wide applicability of these graphical models, there has been a great deal of work on
the problem of graphical model estimation (see, e.g., [RWL10, SW12, Bre15, VMLC16, KM17,
HKM17, RH17, LVMC18, WSD18]). That is, given a dataset generated from a graphical model,
can we infer properties of the underlying distribution? Most of the attention has focused on two
related learning goals. First, the easier goal is structure learning, which involves recovering the set of
non-zero edges.
Definition 4. An algorithm learns the structure of a graphical model if, given samples X1, . . . , Xn

drawn i.i.d. from D, it outputs a graph Ĝ = (V, Ê) over V = [p] such that Ê = E, the set of edges
in the dependency graph of D.

The more difficult goal is parameter learning, which requires the algorithm to learn not only the
location of the edges, but also their parameter values.
Definition 5. An algorithm learns the parameters of a pairwise graphical model if, given samples
X1, . . . , Xn ∼ D, it outputs a set of matrices Ŵ such that |Wi,j(a, b) − Ŵi,j(a, b)| ≤ α, ∀i 6=
j ∈ [p],∀a, b ∈ [k]. An algorithm learns the parameters of a binary t-wise MRF with associated
polynomial h if, given samples X1, . . . , Xn ∼ D, it finds another multilinear polynomial u such that
that for all I ⊂ [p] with |I| = t,

∣∣h̄(I)− ū(I)
∣∣ ≤ α.

We note that, for both learning goals, the sample complexity is known to be only logarithmic in
the dimension p (assuming a bound on the width of the model), thus facilitating estimation in very
high-dimensional settings.

However, in modern settings of data analysis, we may be running our algorithms on datasets which
are sensitive in nature, e.g., medical records, or emails. Therefore, it may be necessary to respect
the privacy of individuals providing their data. In this work, we consider the problem of learning
graphical models under the constraint of differential privacy. (We assume the reader is familiar
with the notions of pure, concentrated, and approximate differential privacy). Given a set of points
X1, . . . , Xn in [k]p, we say that two datasets are neighboring if they differ in exactly one point Xi.
We wish for our algorithms to guarantee both:

• Accuracy: With high probability, the algorithm learns the underlying graphical model;
• Privacy: For every dataset, the algorithm guarantees (the prescribed notion of) differential

privacy.
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A running theme of our inquiry focuses on when estimation in very high-dimensional settings, i.e.,
when the sample complexity is logarithmic in d.

2 Results and Techniques

We first describe our results for the harder problem of parameter learning. On the positive side, we
provide the following upper bound for parameter learning of graphical models under concentrated
differential privacy:

Theorem 6. There exists an efficient ρ-zCDP algorithm which learns the parameters of a pairwise
graphical model with probability at least 2/3, which takes

n = O

(
λ2k5 log(pk)eO(λ)

α4
+

√
pλ2k5.5 log2(pk)eO(λ)

√
ρα3

)
samples.

Theorem 7. There exists an efficient ρ-zCDP algorithm which finds a multilinear polynomial u such
that that with probability greater than 2/3, for all I ⊂ [p] with |I| = t,

∣∣h̄(I)− ū(I)
∣∣ ≤ α, given n

i.i.d. samples Z1, · · · , Zn ∼ D, where

n = O

(
(2t)O(t)eO(λt) · log(p)

α4
+

√
p · (2t)O(t)eO(λt) · log2(p)

√
ρα3

)
.

Moreover, we have ‖h− u‖1 ≤ O(α · pt), where ‖h‖1 =
∑
I

∣∣h̄(I)
∣∣.

These results can be seen as a private adaptation of the elegant work of [WSD18] (which in turn
builds on the structural results of [KM17]) – in particular, the first term in the above expression is the
sample complexity of their non-private algorithm. Wu, Sanghavi, and Dimakis [WSD18] show that
`1-constrained logistic regression suffices to learn the parameters of all pairwise graphical models.
By similar techniques, we can show that it also suffices to learn the parameters of binary t-wise
MRFs. We first develop a private analog of this method, based on the private Franke-Wolfe method
of Talwar, Thakurta, and Zhang [TTZ14, TTZ15], which is of independent interest:

Theorem 8. If we consider the problem of sparse logistic regression, i.e., L(w;D) = 1
n

∑n
i=1 log(1+

e−yi〈w,xi〉), with the constraint that C = {w : ‖w‖1 ≤ λ}, and we further assume that ∀i, ‖xi‖∞ ≤
1, yi ∈ {±1}, there exists an efficient ρ-zCDP algorithm that produces a parameter vector wpriv,
such that with probability at least 1− β,

L(wpriv;D)− L(werm;D) = O

(
λ

4
3 log(npβ )

(n
√
ρ)

2
3

)
.

We note that Theorem 8 avoids a polynomial dependence on the dimension p in favor of a polynomial
dependence on the “sparsity” parameter λ. On this other hand, the sample complexity of Theorem 6
and Theorem 7 is O(

√
p), a large increase from the non-private complexity of O(log p). This arises

due to Theorem 8 being applied to all p nodes, and composition of zCDP. It is natural to wonder
whether this dependence on the dimension can be removed – unfortunately, we show that it can not
be, even under the weaker notion of approximate differential privacy.

Theorem 9 (Informal). Any algorithm which satisfies approximate differential privacy and learns
the parameters of a pairwise graphical model with probability at least 2/3 requires poly(p) samples.

This result is proved by constructing a family of instances of binary pairwise graphical models (i.e.,
Ising models) which encode product distributions. Specifically, we consider the set of graphs formed
by a perfect matching with edges (2i, 2i + 1) for i ∈ [p/2]. In order to estimate the parameter on
every edge, one must estimate the correlation between each such pair of nodes, which can be shown
to correspond to learning the mean of a particular product distribution in `∞-distance. This problem
is well-known to have a gap between the non-private and private sample complexities, due to methods
derived from fingerprinting codes [BUV14, DSS+15, SU17].
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With this poly(p) barrier in mind, the question remains: when is graphical model estimation tractable
in very high-dimensional settings? We relax our learning goal to structure learning, in which we only
have to recover the sparsity pattern of the underlying graph. Under approximate differential privacy,
we can circumvent this barrier and achieve a O(log d) sample complexity:
Theorem 10. There exists an efficient (ε, δ)-differentially private algorithm which, with probability
at least 2/3, learns the structure of a pairwise graphical model. It requires

n = O

(
λ2k4 exp(14λ) log(dk) log(1/δ)

εη4

)
samples.

This result can be derived using stability properties of non-private algorithms. In particular, in
the non-private setting, the guarantees of algorithms for this problem recover the entire graph
exactly with high probability. This allows us to derive private algorithms at a multiplicative cost of
O(log(1/δ)/ε) samples, using either the propose-test-release framework [DL09] or stability-based
histograms [KKMN09, BNSV15]. With this argument in mind, note that the above result can be
immediately extended to higher-order Markov Random Fields, given a non-private algorithm with
the appropriate guarantees, though we omit the statement of this result due to space restrictions.

Unfortunately, intractability returns if we try to strengthen the privacy notion beyond approximate
differential privacy.
Theorem 11 (Informal). Any algorithm which satisfies pure or concentrated differential privacy and
learns the structure of a pairwise graphical model with probability at least 2/3 requires poly(p)
samples.

We derive this result via packing arguments [HT10, BBKN14], by showing that there exists a large
number (exponential in p) of different binary pairwise graphical models which must be distinguished.
The construction of a packing of size m implies lower bounds of Ω(logm) and Ω(

√
logm) for

learning under pure and concentrated differential privacy, respectively.

3 Conclusions and Next Steps

Our results provide upper and lower bounds for private estimation of MRFs, under a variety of
privacy notions, and both structure and parameter learning. Non-privately, both notions of learning
require O(log p) samples. However, privately, we can only maintain a logarithmic dependence on the
dimension if we consider structure learning under approximate differential privacy.

At this point, our results for binary t-wise MRFs only recover the coefficients of the polynomial
corresponding to the highest degree terms. We hope to improve our results to estimate all maximal
monomials of the polynomial.

Another direction we plan to pursue is better algorithms for privately learning the structure of a
graphical model. Our current algorithm incurs a multiplicative cost of O(log(1/δ)/ε) over the
non-private algorithm in order to guarantee privacy. We would like to derive algorithms which incur
only an additive cost over the non-private algorithms, thus guaranteeing “privacy for free” in various
parameter regimes.
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